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1 Introduction

Known doubly transitive permutation groups are well studied and the classifica-
tion of all doubly transitive groups has been done by applying the classification
of the finite simple groups. Readers may refer to [6]. This may mean that it
is not still sufficient to study doubly transitive groups as permutation groups.
Typical arguments on doubly transitive groups are seen in the book[3]. In the
present paper we will give a combinatorial approach to doubly transitive groups.
We use a combinatorial structure called a superscheme defined by the stabilizer
of a point in a doubly transitive group and try to construct the superscheme
defined by the given doubly transitive group. So if a superscheme defined by
a transitive group is given first, our algorithm will construct the superscheme
defined by the expected transitive extension of the given group. We do not
use any group elements in this construction. Then if no superscheme is con-
structed, we can conclude that there is no transitive extension. If a superscheme
is constructed, its automorphism group can be expected to be closely related
to the transitive extension. However we will not compute the automorphism
group, since we can guess what doubly transitive group it is. We will show how
our algorithm works in the case of projective special linear groups PSL(m, q),
m ≥ 3. Our algorithm also works successfully in the case of symplectic groups
Sp(2m, 2), m ≥ 3, over GF (2) acting on the cosets by O+(2m, 2) and O−(2m, 2).
In PSL-cases the automorphism groups of the obtained superschemes are usu-
ally imagined to be PGL. We also compute the transitive extensions of these
groups itself. Our algorithm shows that they do not have transitive extensions
except that PSL(m, 2) and PSL(3, 4), which are known to give AGL(m, 2) and
the Mathieu group M22 of degree 22, and so on, we can consider the extensions
of the obtained groups. Computer experiments suggest that our algorithm can
be applied to any doubly or more transitive groups. We note that an obtained
superscheme may not have a doubly transitive automorphism group.

Association schemes are often used to study permutation groups. A doubly
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transitive group of degree n defines a trivial association scheme which is the same
one given by the symmetric group of degree n. So it is worthless to consider the
association schemes given by doubly transitive groups. If a group G is doubly
transitive and not triply transitive, the stabilizer of a point in G defines a non-
trivial association scheme. But as is mentioned in [7], this association scheme is
not sufficient to construct the group G. I will repeat about this fact briefly in
the present paper. So we will use superschemes to construct doubly transitive
groups from their stabilizers of a point. Superschemes are introduced in [5, 8].
We will follow a slightly different definition of superschemes given in [4]. In
particular association schemes are superschemes.

We note that we used GAP[2] for our computer experiments.

2 Association schemes and superschemes

Let X = {x1, x2, · · · , xs} be the set of vertices. Then an association scheme
(X, {Ri}0≤i≤d) and a superscheme (X, Π) are defined as follows.

Definition. (X, {Ri}0≤i≤d) is an association scheme if and only if

1. R0 = {(x, x)|x ∈ X},
2. {R0, R1, · · · , Rd} is a partition of X ×X,

3. for all Ri there exists Ri′ such that Ri′ = {(y, x)|(x, y) ∈ Ri},
4. for all Ri, Rj , Rk and for all (x, y) ∈ Rk, there exists a constant number

pijk such that

pijk = #{z ∈ X|(x, z) ∈ Ri, (z, y) ∈ Rj , (x, y) ∈ Rk}.

Definition. (X, Π) is a superscheme if and only if

1. Π = {Π1,Π2, · · · ,Πt} for some t ≥ 2, Πl is a partition of X l for 1 ≤ l ≤ t,

2. let σ((y1, y2, · · · , yl)) = (yσ(1), yσ(2), · · · , yσ(l)) for σ ∈ Sym(l), let Πl =
{Rl

0, R
l
1, · · · , Rl

dl
}, 1 ≤ l ≤ t, then σ(Rl

k) ∈ Πl for all Rl
k and all σ ∈

Sym(l),

3. let a projection πl : X l → X l−1 be defined by
πl((y1, y2, · · · , yl−1, yl)) = (y1, y2, · · · , yl−1),
then πl(Rl

k) ∈ Πl−1 for all Rl
k ∈ Πl, 2 ≤ l ≤ t,

4. for all Rl
k, 2 ≤ l ≤ t, for all y = (y1, y2, · · · , yl−1) ∈ πl(Rl

k), there exists a
constant number pl

k such that pl
k = |(πl)−1(y) ∩ Rl

k|. In particular pl
k =

|Rl
k|/|πl(Rl

k)|.
For more properties of association schemes, readers may refer to [1]. The

properties 2 and 4 of a superscheme are called symmetric and regular in [4],
respectively. Referring to the number t in the definition of a superscheme, we
simply call a t-superscheme. Each Rl

i is called a relation.
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By the property 4 an association scheme always induces a 3-superscheme
such that Π1 = {X}, Π2 = {R0, R1, · · · , Rd} and Π3 consists of Ri,j,k =
{(x, y, z)| (x, y) ∈ Rk, (x, z) ∈ Ri, (z, y) ∈ Rj}, where some of them may be
empty.

3 Computation of superschemes related to tran-
sitive extensions

Let G be a transitive permutation group on a set X and let Gα be the stabilizer
of a point α ∈ X in G. If the group Gα is given first, then the group G is said to
be the transitive extension of Gα. Suppose that G is (t− 1)-ply transitive and
not t-ply transitive on X, where t ≥ 3. Suppose X = {1, 2, · · · , n, n + 1}. Let
X(l) = {(i1, i2, · · · , il)|ij ∈ X, all ij are distinct} for 1 ≤ l ≤ t. Then the orbits
of the stabilizer Gn+1 of n + 1 ∈ X in G acting on X l are obtained from those
on X(l). So we will only consider the orbits on X(l) and consider the partition
of X(l) for superschemes, which will be denoted so that Π(l) = {R(l)

1 , · · · , R(l)
dl
}.

We set πl
j = πl · (j, j + 1, · · · , l), where (j, j + 1, · · · , l) ∈ Sym(l). Then by the

symmetricity and the regularity of superschemes we have a constant number
pl

k,j such that pl
k,j = |(πl

j)
−1(y) ∩ Rl

k| for all Rl
k, 2 ≤ l ≤ t and for all y =

(y1, y2, · · · , yl−1) ∈ πl
j(R

l
k).

Let (X, Π′) be the t-superscheme given by a (t−2)-ply transitive group Gn+1

on X\{n + 1}. Suppose that there exists the transitive extension G of Gn+1

and let (X, Π) be the t-superscheme given by G. Then the superscheme given
by a (t− 1)-ply transitive group satisfies that Π(l) = {X(l)} for 1 ≤ l < t. Now
we try to combine the orbits of Gn+1 on X(t) to be the possible orbits of G
on X(t). This is done only using the superschemes. We will construct all the
possible Π(t) from Π′(t). Since G is (t− 1)-ply transitive, the following holds.

Proposition 1 Let R
′(t−1)
k , 1 ≤ k ≤ r, be the relations in Π′(t−1) such that

R
′(t−1)
k ⊆ (X\{n + 1})(t−1). Then G has r orbits on X(t) which are of size

|X| · |R′(t−1)
k |, k = 1, 2, · · · , r.

Theorem 2 Let Π′(t) = {R′1, R′2, · · · , R′d} and set Y = {1, 2, · · · , d}. Let {Y1,
Y2, · · · , Yr} be a partition of Y and set Rk to be the union of R′i, i ∈ Yk for
1 ≤ k ≤ r. If it hold that Π(t) = {R1, R2, · · · , Rr}, then πt

j(Rk) = X(t−1) and we

have the constants pt
k,j = |X| · |R′(t−1)

k |/|X(t−1)| = |R′(t−1)
k |/|(X\{n + 1})(t−2)|

for all 1 ≤ k ≤ r and all 1 ≤ j ≤ t in the t-superscheme (X, Π). Let p′ti,j =

|R′i|/|πt
j(R

′
i)| be the constants of (X, Π′). For any R

′(t−1)
s ∈ Π′(t−1) we set

Yk,j,s = {i ∈ Yk|πt
j(R

′
i) = R

′(t−1)
s }. Then we have pt

k,j =
∑

i∈Yk,j,s
p′ti,j.

Theorem 2 is a little complicated to check the conditions without a computer
and it is rather an algorithm which one can understand easily if one see the
examples in the next section.
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Table 1
Orbits of the stabilizer of Pl in PSL(m, q) on P(2) and

those of PSL(m, q) on (P ∪ {P0})(3)
stabilizer of Pl PSL(m, q)

No. size rep. size rep. property
1 n(q − 1) (Pi, Pj) (n + 1)n(q − 1) (Pi, Pj , Pl) Pj ∈ 〈Pi, Pl〉
2 n(n− q) (Pi, Pj) (n + 1)n(n− q) (Pi, Pj , Pl) Pj 6∈ 〈Pi, Pl〉
3 n (Pl, Pi) (n + 1)n (P0, Pi, Pl)
4 n (Pi, Pl) (n + 1)n (Pi, P0, Pl)
5 (n + 1)n (Pi, Pl, P0)

4 Examples

We will show how our algorithm works for G = PSL(m, q), m ≥ 3. Let Gn+1 be
the stabilizer of a point Pl in G acting on the projective space P of dimension
m−1 over a finite field of q elements. So X = P, t = 3 and n = q+q2+· · ·+qm−1.
The orbits of Gn+1 on P(2) are shown in Table 1 together with those of G on
(P ∪ {P0})(3). Gn+1 has four orbits on P(2) and two of them are contained in
(P\{Pl})(2), which are numbered 1 and 2 in Table 1. Table 1 shows that, for
instance, the orbit 1 is of size n(q − 1) and consists of the couples (Pi, Pj) such
that the point Pj belongs to the projective line 〈Pi, Pl〉. Then by Theorem 2 G
has two orbits on P(3) and we have p3

j,1 = q − 1 and p3
j,2 = n− q, 1 ≤ j ≤ 3.

Table 2 consists of two parts. The first part of table 2 shows the orbits
of Gn+1 on P(3). For instance, Gn+1 has q − 2 orbits 1(1),· · · ,1(q − 2) which
consist of (Pi, Pj , Pk) satisfying Pj , Pk ∈ 〈Pl, Pi〉. Gn+1 is transitive on the
triples (Pi, Pj , Pk) satisfying Pk ∈ 〈Pl, Pi, Pj〉 and any three of Pi, Pj , Pk and Pl

non collinear if m 6= 3 or 3 6 |q − 1, which is denoted by orbit 6. If m = 3|q − 1,
then Gn+1 has three orbits on them. So in this case they are denoted by 6(1),
6(2) and 6(3). The second part of Table 2 denotes the orbit numbers s of Gn+1

on P(2) in Table 1 such that πt
j(R

′
i) = R

′(t−1)
s in the columns of label ”im.” and

the constants p′3i,j = |R′i|/|π3
j (R′i)| in the columns of label ”mult.” for each orbit

shown in the first part of Table 2. Here πj = π3
j , 1 ≤ j ≤ 3.

Now we compute the partition {Y1, Y2} of the set Y of the orbit numbers in
the first part of Table 2. We have {2, 3, 4, 9, 11, 13} ⊂ Y2, since n − q > q − 1
and each of the orbits {2, 3, 4, 9, 11, 13} has a constant p′3i,j = n − q for some i,
j. Then {8, 10, 12} ⊂ Y1. Furthermore we have {1(1), 1(2), · · · , 1(q − 2)} ⊂ Y1,
since n− q = p3

2,1 = p′34,1 implies Y2,1,1 = {4}. Here we consider three cases. In
the first case we assume that q > 2 and (m 6= 3 or q 6= 4). We assume q = 2 in
the second case and assume m = 3 and q = 4 in the third case.

In the first case p′36,1 = (q − 1)2 > q − 1 or p′36(i),1 = (q − 1)2/3 > q − 1.
So we have 6 or 6(i) ∈ Y2. If m = 3, there does not exist the orbit 7, as
n = q + q2, else p′37,1 > q − 1. So we have 7 ∈ Y2 in general. Thus we have
Y1 = {1(1, · · · , q − 2), 5, 8, 10, 12} and Y2 = Y \Y1. Here we see, for instance,
in the π1-column of Table 2 that Y1,1,1 = {1(1, · · · , q − 2), 8}, Y1,1,2 = {5},
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Table 2
Orbits of the stabilizer of Pl in PSL(m, q) on P(3)

No. size rep. property
1(1) n(q − 1) (Pi, Pj , Pk) Pj , Pk ∈ 〈Pl, Pi〉

...
...

...
...

1(q − 2) n(q − 1) (Pi, Pj , Pk) Pj , Pk ∈ 〈Pl, Pi〉
2 n(q − 1)(n− q) (Pi, Pj , Pk) Pj ∈ 〈Pl, Pi〉, Pk 6∈ 〈Pl, Pi〉
3 n(q − 1)(n− q) (Pi, Pj , Pk) Pj 6∈ 〈Pl, Pi〉, Pk ∈ 〈Pl, Pi〉
4 n(q − 1)(n− q) (Pi, Pj , Pk) Pj 6∈ 〈Pl, Pi〉, Pk ∈ 〈Pl, Pj〉
5 n(q − 1)(n− q) (Pi, Pj , Pk) Pj 6∈ 〈Pl, Pi〉, Pk ∈ 〈Pi, Pj〉
6 n(q − 1)2(n− q) (Pi, Pj , Pk) Pk ∈ 〈Pl, Pi, Pj〉, non collinear

6(1, 2, 3) n(q − 1)2(n− q)/3 (Pi, Pj , Pk) as above and m = 3|q − 1
7 n(n− q)(n− q − q2) (Pi, Pj , Pk) Pk 6∈ 〈Pl, Pi, Pj〉, non collinear
8 n(q − 1) (Pl, Pi, Pj) Pj ∈ 〈Pl, Pi〉
9 n(n− q) (Pl, Pi, Pj) Pj 6∈ 〈Pl, Pi〉
10 n(q − 1) (Pi, Pl, Pj) Pj ∈ 〈Pl, Pi〉
11 n(n− q) (Pi, Pl, Pj) Pj 6∈ 〈Pl, Pi〉
12 n(q − 1) (Pi, Pj , Pl) Pj ∈ 〈Pl, Pi〉
13 n(n− q) (Pi, Pj , Pl) Pj 6∈ 〈Pl, Pi〉

The properties of projections
π1 π2 π3

No. im. mult. im. mult. im. mult.
1(1, · · · , q − 2) 1 1 1 1 1 1

2 2 q − 1 2 q − 1 1 n− q
3 2 q − 1 1 n− q 2 q − 1
4 1 n− q 2 q − 1 2 q − 1
5 2 q − 1 2 q − 1 2 q − 1
6 2 (q − 1)2 2 (q − 1)2 2 (q − 1)2

6(1,2,3) 2 (q − 1)2/3 2 (q − 1)2/3 2 (q − 1)2/3
7 2 n− q − q2 2 n− q − q2 2 n− q − q2

8 1 1 3 q − 1 3 q − 1
9 2 1 3 n− q 3 n− q
10 3 q − 1 1 1 4 q − 1
11 3 n− q 2 1 4 n− q
12 4 q − 1 4 q − 1 1 1
13 4 n− q 4 n− q 2 1
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Y1,1,3 = {10}, Y1,1,4 = {12}, Y2,1,1 = {4}, Y2,1,2 = {2, 3, 6, 7, 9}, Y2,1,3 = {11}
and Y2,1,4 = {13}.

In the second case, since (q − 1)2 = q − 1, the orbits 5 and 6 have the
same entries. Since q − 2 = 0, there exist no orbits 1(1, · · · , q − 2). So we have
two possibilities Y1 = {5, 8, 10, 12} and Y1 = {6, 8, 10, 12}. Then Y2 = Y \Y1,
respectively. Computer experiment shows that the automorphism groups of the
obtained superschemes are PSL(3, 2) in both of the possibilities if m = 3.

In the third case, since (q− 1)2/3 = q− 1, all the orbits 5 and 6(1,2,3) have
the same entries. So we have four possibilities Y1 = {1(1, · · · , q−2), i, 8, 10, 12},
where i is any of {5, 6(1), 6(2), 6(3)}, and Y2 = Y \Y1. In all of the possibilities
computer experiment gives that the automorphism groups are PΓL(3, 4).

Here we mention about the association scheme defined by Gn+1 on X\{n +
1}. In an association scheme we easily see that the orbits of Gn+1 on (X\{n +
1})(3) which have the same entries in the ”im.”-columns are contained in a
common relation. So in particular the orbits 5 and 6 are contained in a relation
of the association scheme defined by Gn+1. But the above argument gives
that the orbits 5 and 6 belong to the different sets of Y1 and Y2 with Y1 ∩
Y2 = φ. Therefore association schemes are not sufficient to compute transitive
extensions.

Next we try to compute the 4-superschemes given by the transitive exten-
sions of PSL(m, q) itself. So t = 4 and Y = {1, 2, · · · , 15}. Consulting Table
3, similar arguments as above give that {2, 3, 4, 5} ⊂ Y2. Here we notice that
the four orbits 2, 3, 4, and 5 are permuted by the Sym(4) in the property 2
of a superscheme with t = 4. We consider three cases as above. In the first
case the same argument as above implies 5 ∈ Y1. But already 5 ∈ Y2, a con-
tradiction. So we have no possibilities in the first case. In the second case we
have one possibility Y1 = {6, 8, 10, 12, 14}. So in this case we may have the
transitive extension AGL(m, 2). In the third case we have three possibilities
Y1 = {1(1, · · · , q − 2), i, 8, 10, 12, 14}, where i is any of {6(1), 6(2), 6(3)}. So we
can expect the transitive extension M22.

Then let us go forward to consider the further transitive extensions. Now
t = 5 and Y = {1, 2, · · · , 17}. Comparing Table 2 and 3, readers may easily
guess the properties of the orbits 16 and 17. Then as we noticed above, in
this extension the Sym(5) should permute the orbits 2, 3, 4, 5 and one more
orbit which should be the orbit 6 or 6(i). This gives some conditions that
π5 should satisfy. This also implies that they are all contained in Y2, since
the Sym(5) acts trivially on Π(5) = {R(5)

1 , R
(5)
2 } with |R(5)

1 | 6= |R(5)
2 |. So if

q = 2, we have Y1 = {8, 10, 12, 14, 16}, which does not satisfy the conditions in
Theorem 2. Thus AGL(m, 2) does not have a transitive extension. If m = 3
and q = 4, then we may assume 6(3) ∈ Y2 and we have still two possibilities
Y1 = {1(1, · · · , q − 2), i, 8, 10, 12, 14, 16}, where i is any of {6(1), 6(2)}. Here we
expect M23. In the next extension we can expect M24 with t = 6, |Y | = 19, and
Y1 = {1(1, · · · , q − 2), 6(1), 8, 10, 12, 14, 16}. At last we consider the transitive
extension of M24. Then t = 7, |Y | = 21 and the Sym(7) should permute the
orbits 2, 3, 4, 5, 6(1), 6(2) and 6(3). Hence they are contained in Y2. So we

6



Table 3
Orbits of PSL(m, q) on (P ∪ {P0})(4)

No. size ( a = (n + 1)n ) rep. property

1(1) a(q − 1) (Pi, Pj , Pk, Pl) Pj , Pk ∈ 〈Pl, Pi〉
...

...
...

...
1(q − 2) a(q − 1) (Pi, Pj , Pk, Pl) Pj , Pk ∈ 〈Pl, Pi〉

2 a(q − 1)(n− q) (Pi, Pj , Pk, Pl) Pj ∈ 〈Pl, Pi〉, Pk 6∈ 〈Pl, Pi〉
3 a(q − 1)(n− q) (Pi, Pj , Pk, Pl) Pj 6∈ 〈Pl, Pi〉, Pk ∈ 〈Pl, Pi〉
4 a(q − 1)(n− q) (Pi, Pj , Pk, Pl) Pj 6∈ 〈Pl, Pi〉, Pk ∈ 〈Pl, Pj〉
5 a(q − 1)(n− q) (Pi, Pj , Pk, Pl) Pj 6∈ 〈Pl, Pi〉, Pk ∈ 〈Pi, Pj〉
6 a(q − 1)2(n− q) (Pi, Pj , Pk, Pl) Pk ∈ 〈Pl, Pi, Pj〉, non collinear

6(1, 2, 3) a(q − 1)2(n− q)/3 (Pi, Pj , Pk, Pl) as above and m = 3|q − 1
7 a(n− q)(n− q − q2) (Pi, Pj , Pk, Pl) Pk 6∈ 〈Pl, Pi, Pj〉, non collinear
8 a(q − 1) (P0, Pi, Pj , Pk) Pk ∈ 〈Pi, Pj〉
9 a(n− q) (P0, Pi, Pj , Pk) Pk 6∈ 〈Pi, Pj〉
10 a(q − 1) (Pi, P0, Pj , Pk) Pk ∈ 〈Pi, Pj〉
11 a(n− q) (Pi, P0, Pj , Pk) Pk 6∈ 〈Pi, Pj〉
12 a(q − 1) (Pi, Pj , P0, Pk) Pk ∈ 〈Pi, Pj〉
13 a(n− q) (Pi, Pj , P0, Pk) Pk 6∈ 〈Pi, Pj〉
14 a(q − 1) (Pi, Pj , Pk, P0) Pk ∈ 〈Pi, Pj〉
15 a(n− q) (Pi, Pj , Pk, P0) Pk 6∈ 〈Pi, Pj〉

The properties of projections
π1 π2 π3 π4

No. im. mult. im. mult. im. mult. im. mult.
1(1, · · · , q − 2) 1 1 1 1 1 1 1 1

2 2 q − 1 2 q − 1 1 n− q 2 q − 1
3 2 q − 1 1 n− q 2 q − 1 2 q − 1
4 1 n− q 2 q − 1 2 q − 1 2 q − 1
5 2 q − 1 2 q − 1 2 q − 1 1 n− q
6 2 (q − 1)2 2 (q − 1)2 2 (q − 1)2 2 (q − 1)2

6(1,2,3) 2 (q − 1)2/3 2 (q − 1)2/3 2 (q − 1)2/3 2 (q − 1)2/3
7 2 n− q − q2 2 n− q − q2 2 n− q − q2 2 n− q − q2

8 1 1 3 q − 1 3 q − 1 3 q − 1
9 2 1 3 n− q 3 n− q 3 n− q
10 3 q − 1 1 1 4 q − 1 4 q − 1
11 3 n− q 2 1 4 n− q 4 n− q
12 4 q − 1 4 q − 1 1 1 5 q − 1
13 4 n− q 4 n− q 2 1 5 n− q
14 5 q − 1 5 q − 1 5 q − 1 1 1
15 5 n− q 5 n− q 5 n− q 2 1
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have Y1 = {1(1, · · · , q − 2), 8, 10, 12, 14, 16, 18, 20}, which does not satisfy the
conditions in Theorem 2. Thus M24 does not have a transitive extension.

For the cases of Sp(2m, 2) acting on Sp(2m, 2)/O+(2m, 2) and Sp(2m, 2)/
O−(2m, 2) we have the 3-superschemes defined by Sp(2m, 2) and have no 4-
superschemes which may give the transitive extensions of Sp(2m, 2) itself. So
in particular we have Sp(2m, 2), m ≥ 3 have no transitive extensions.
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