
Computing Normalizers of Permutation Groups Efficiently
using Isomorphisms of Association Schemes

Izumi Miyamoto
Department of Computer Science Yamanashi University

4-3-11 Takeda Kofu 400-8511, Japan

izumi@esi.yamanashi.ac.jp

ABSTRACT
This note presents an algorithm to speed up the computa-
tion of normalizers of permutation groups. It is an applica-
tion of computation of isomorphisms of association schemes.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Alge-
braic Algorithms; G.2.1 [Discrete Mathematics]: Combi-
natorics; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms
Algorithms

1. INTRODUCTION
In GAP4 there is a data of all transitive permutation groups
of degree up to 22 [6]. These degrees seem to be small, but
there are a couple of groups for which the computation of
the normalizer in the symmetric group is hard either by GAP4

or by Magma2.5. In this note, for a permutation group G
we present an algorithm to construct a group in which the
normalizer of G is contained. Then computing in the group
by a GAP4 command Normalizer [8, 7], we can obtain the
normalizer in reasonable time. It takes about 10 seconds as
total runtime in many of the hard cases stated above. The
performance of our program is seen in the tables in section
5. Especially, we can compute all the normalizers of the 59
transitive permutation groups of degree 22 within about 280
seconds and compute all the normalizers of the 164 transitive
permutation groups of degree 21 within about 20 minutes.
Some results in larger degrees are also shown in section 5.

A. Hanaki and the author classified the association schemes
with small number of vertices Ω up to isomorphism ([4], [5],
[3]). For the definition and fundamental properties of as-
sociation schemes, readers may refer to [1]. An association
scheme used in this note is related to a transitive permuta-
tion group. Let G be a transitive permutation group on a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2000,St. Andrews, Scotland
c©2000 ACM 1-58113-218-2/ 00/ 0008 $5.00

set Ω. Here an association scheme is the orbits of G acting
on Ω × Ω. We simply call such orbits two-orbits of G. Let
H be an another permutation group on Ω. Two association
schemes associated with G and H are said to be isomorphic
if and only if there is a permutation on Ω that moves the
two-orbits of G to those of H. A permutation normalizing
G clearly leaves the two-orbits of G invariant. This means
that it may move one two-orbit to another but fixes them
as a whole. Thus the normalizer of G is contained in the
group consisting of all the permutations which give the iso-
morphisms from the association scheme associated with G
to itself.

We use above fact in order to restrict the group where the
normalizer of G is computed. The author wrote a program
in GAP programming language [2] to compute normalizers of
permutation groups using above argument. In the program
we apply this argument repeatedly under some familiar con-
dition stated in the lemma in section3 and finally use the
command Normalizer of GAP4.

2. ASSOCIATION SCHEMES OF TRANSI-
TIVE GROUPS

In this section we will introduce association schemes used in
this note briefly. Let G be a transitive permutation group
on a set of points Ω. An association scheme used in this
note is the set of the orbits of G on Ω×Ω. We note that the
orbits correspond to the double cosets of G by the stabilizer
of a point of Ω. We will denote such an orbit, as we called a
two-orbit, by a matrix whose rows and columns are indexed
by the set Ω. Let Ai be the matrix corresponding to the i-th
two-orbit of G. Then the (p, q) entry of Ai is defined by

Ai(p, q) =

¡
1 if the tuple [p, q] is in the i-th two-orbit.
0 otherwise.

If there are d + 1 two-orbits, then we have d + 1 {0, 1}-
matrices A0, A1, · · · , Ad. Let A0 be the two-orbit contain-
ing [p, p]. Then the matrices have the following properties.

1. Ai has {0, 1}-entries and has constant column and
row sum. A0 =identity matrix.

2. A0 + A1 + · · ·+ Ad = J(all 1 matrix)

3. For all i there exists i′ such that tAi = Ai′ .

4. AiAj = Σ0≤k≤d pijkAk (A0, A1, · · · , Ad are a basis
of the algebra generated by themselves.)

220

The last property follows that the double cosets are a basis
of the subalgebra of the group algebra of G generated by
themselves. We will write an association scheme by a matrix
defined by A = 0A0 + 1A1 + 2A2 + · · · + dAd in section 4.
Let H be a transitive group on Ω and let B0, B1, · · · , Bd

be the association scheme of H, where B0 is the identity
matrix. Then the two association schemes of G and H are
isomorphic if and only if there exist a permutation σ on
the indices {1, 2, · · · , d} of the matrices and a permutation
matrix P on Ω which satisfy

Bi = P−1Aiσ P for i = 1, 2 · · · , d.

An isomorphism from an association scheme to itself will
be called simply an isomorphism of the association scheme.
Suppose that Q is the permutation matrix of a permuta-
tion which normalizes G. Then there exists a permutation
τ on {1, 2, · · · , d} which satisfies that Q−1AiQ = Aiτ for
i = 1, 2, · · · , d, since Q leaves the two-orbits of G invari-
ant. Let N be the group consisting of the permutations
on Ω each of which gives an isomorphism of the associa-
tion scheme of G with some permutation σ on {1, 2, · · · , d}.
We will call N the group of isomorphisms of the association
scheme. Our program computing the group of isomorphisms
of an association scheme uses backtrack algorithms consid-
ering some properties of an association scheme mentioned
above. We note that an automorphism of an association
scheme is an isomorphism which leaves each Ai invariant
and that G is contained in the automorphism group of the
association scheme.

3. ALGORITHMS
Suppose that we want to compute a normalizer of a permu-
tation group G on Ω. If G is transitive, let N be the group
of the isomorphisms of the association scheme of G. If G
is not transitive then each operation on an orbit of G gives
an association scheme. We will consider all such association
schemes. We call them the system of association schemes of
G. Now we can compute the isomorphisms of each associa-
tion scheme in the system. Moreover if two of the association
schemes in the system are isomorphic to each other then we
also compute a permutation which gives an isomorphism be-
tween them. We will consider the group generated by the
isomorphisms of the association schemes in the system given
by G and the set of isomorphisms between all the pairs of
mutually isomorphic association schemes. We denote this
group N . Then the normalizer of G is contained in N , since
it leaves the set of the two-orbits of the actions of G on the
orbits invariant. We call N the group of isomorphisms of
the system of association schemes.

Lemma 1. Let K be a permutation group on Ω. Let F be
a tuple [p1, p2, · · · , pr] of points in Ω and let Gi be the sta-
bilizer of the subset [p1, p2, · · · , pi] of F as a tuple in G for
i = 1, 2, · · · , r. Let N i be the group of isomorphisms of the
system of association schemes of Gi on Ω\[p1, p2, · · · , pi].

Set N0 = N , G0 = G and set N{0..i} = N0 ∩N1 ∩ · · · ∩N i.
Suppose that Gi ∩K is transitive on the orbit of N{0..i} ∩K
containing the point pi+1 for i = 0, 1, · · · , r − 1. Then the
normalizer of G in K is generated by G ∩ K and the nor-
malizer of G in N{0..r} ∩K.

Proof. Suppose that r = 0, that is, F is an empty set.
Then it is clear that the normalizer of G in K is contained

in N ∩K. So the lemma holds. Suppose that the normalizer
of G in K is generated by G∩K and the normalizer of G in
N{0..r−1} ∩K. Consider the right coset of N{0..r−1} ∩K by
its stabilizer of the point pr. Since the subgroup Gr−1 ∩K
of N{0..r−1} ∩K is transitive on the orbit of N{0..r−1} ∩K
containing pr, all the elements of a transversal of the right
cosets can be chosen in Gr−1 ∩K. This transversal is also a
set of the representatives of the right cosets of the normalizer
of G in N{0..r−1}∩K by its stabilizer of pr, since it contains
Gr−1∩K. So this normalizer is generated by the transversal
and the normalizer of G in the stabilizer of pr in N{0..r−1}∩
K. Then the latter normalizer also normalizes Gr, since it
fixes [p1, p2, · · · , pr] pointwise, and so it is contained in Nr.

This means that it is contained in N{0..r}∩K and the lemma
is proved by mathematical induction.

We note that if G is not transitive and the actions of G
on all the orbits are mutually isomorphic as permutation
groups and if K is, for instance, the symmetric group then
the lemma is of little use, because we can choose no points
in the lemma and we have to compute the normalizer in N
by the GAP-command Normalizer. Precisely, in our program
we first check sizes of the orbits and the orders of the actions
of G on the orbits and if the sizes and the orders are equal
on certain two orbits then an isomorphism between them is
computed as association schemes.

In the second example in the next section if K is the alter-
nating group then N ∩ K is transitive but G ∩ K has two
orbits isomorphic to each other. Therefore this lemma does
not work well. So in such a case we had better compute the
normalizer in the symmetric group where the lemma works
well and then compute the intersection of K and the nor-
malizer. On the contrary if K is substantially smaller than
the symmetric group, then it would be better to compute
the normalizer in N ∩K directly whether the lemma works
well or not. So if K does not contain G, we divided the way
to compute the normalizer in our program by comparing the
numbers of the orbits of G and G ∩K heuristically.

If we use the sequence of points [p1, p2, · · · , pr] in the lemma
to compute normalizers then we compute isomorphisms of
(systems of) association schemes r + 1 times, where r is the
number of the points in the sequence. In order to restrict
the groups in which the normalizers are computed, it may
not be wise to use the lemma as far as possible. Moreover
heuristically, if the length of the orbit containing pi is rather
short, it does not seem to be efficient to use the point pi. In
any step of i = 1, 2, · · · , r there may exist more than one
orbit satisfying Lemma 1. In such case we choose the point
pi in a longer orbit in our program. If the lemma works,
the most part of computing time of our program is spent
by the computation about the association schemes stated in
the lemma.

4. EXAMPLES
Let K be the symmetric group of degree 14, let p =
(2, 8, 10,13, 5, 4, 9, 6, 11, 7, 3)(12, 14) and let G = Transitive-

Group(14,23)p = Group((8,9,11,10,13,14,12), (1,6,7)(2,5,4)
(8,9,10)(11,14,13), (1,5)(2,7)(4,6)(8,14)(9,13)(10,11), (1,11,
5,10)(2,9,7,13)(3,12)(4,8,6,14)) from GAP library. G is of or-
der 588. Then the association scheme (the two-orbits) of

221

the permutation group G = G0 on Ω = {1, 2, · · · , 14} is as
follows.

0
BBBBBBBBBBBBBBBBBBBBB@

0 1 1 1 1 1 1 2 2 2 2 2 2 2
1 0 1 1 1 1 1 2 2 2 2 2 2 2
1 1 0 1 1 1 1 2 2 2 2 2 2 2
1 1 1 0 1 1 1 2 2 2 2 2 2 2
1 1 1 1 0 1 1 2 2 2 2 2 2 2
1 1 1 1 1 0 1 2 2 2 2 2 2 2
1 1 1 1 1 1 0 2 2 2 2 2 2 2
2 2 2 2 2 2 2 0 1 1 1 1 1 1
2 2 2 2 2 2 2 1 0 1 1 1 1 1
2 2 2 2 2 2 2 1 1 0 1 1 1 1
2 2 2 2 2 2 2 1 1 1 0 1 1 1
2 2 2 2 2 2 2 1 1 1 1 0 1 1
2 2 2 2 2 2 2 1 1 1 1 1 0 1
2 2 2 2 2 2 2 1 1 1 1 1 1 0

1
CCCCCCCCCCCCCCCCCCCCCA

Here the rows and the columns of the matrix are indexed
by Ω = {1, 2, · · · , 14} and G has 3 two-orbits on Ω, which
are distinguished by the entries 0, 1 and 2. ¿From this ma-
trix we can see that G is imprimitive with two blocks of
length 7 and the stabilizer of the blocks acts doubly tran-
sitively on each block. Then the group of isomorphisms
of this association scheme N = N0 is isomorphic to the
wreath product S7 o S2, where Sn denotes the symmetric
group of degree n. N0 is transitive on Ω and the orbits
of N0

1 , the stabilizer of 1 in N0 are {1}, {2, 3, · · · , 7} and
{8, 9, · · · , 14}. Let [p1, p2, p3] = [1, 8, 9]. Then we see that
the two orbits of the groups Gi and N i stated in Lemma
1 coincide with each other respectively for i = 0, 1, 2 and
so they satisfy the assumption of Lemma 1. Here is the
data of G1 = G1 and G2 = G1,8, the generators, the orbits
and the systems of association schemes respectively. G1 =
G1 = Group((2,5)(3,6)(4,7)(8,14)(9,13)(10,11), (2,4,6)(3,5,7)
(8,9,10) (11,14,13), (8,9,11,10,13,14,12)). G2 = G1,8 =
Group((2,4,6)(3,5,7)(9,11,13)(10,12,14), (2,5)(3,6)(4,7)(9,12)
(10,13)(11,14)) ∼= cyclic group of order 6. The orbits of G1

are {1}, {2, 3, · · · , 7} and {8, 9, · · · , 14}. The orbits of G1,8

are {1}, {2, 3, · · · , 7}, {8} and {9, 10, · · · , 14}. We construct
an association scheme for each orbit of the groups. Each
two-orbit of the action of the groups on the orbits is de-
noted by the entries with a same number in the following
matrices respectively.

0
BBBBBBBBBBBBBBBBBBBBB@

8 ∗ ∗
0 1 2 3 4 5
5 0 1 2 3 4

∗ 4 5 0 1 2 3 ∗
3 4 5 0 1 2
2 3 4 5 0 1
1 2 3 4 5 0

6 7 7 7 7 7 7
7 6 7 7 7 7 7
7 7 6 7 7 7 7

∗ ∗ 7 7 7 6 7 7 7
7 7 7 7 6 7 7
7 7 7 7 7 6 7
7 7 7 7 7 7 6

1
CCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBB@

12 ∗ ∗
0 1 2 3 4 5
5 0 1 2 3 4

∗ 4 5 0 1 2 3 ∗
3 4 5 0 1 2
2 3 4 5 0 1
1 2 3 4 5 0

13 ∗
6 7 8 9 10 11
11 6 7 8 9 10

∗ ∗ 10 11 6 7 8 9
∗ 9 10 11 6 7 8

8 9 10 11 6 7
7 8 9 10 11 6

1
CCCCCCCCCCCCCCCCCCCCCA

G3 = G1,8,9 is the identity group. Thus N1 =Group((2,3,4,5,
6,7), (3,7)(4,6)) ×S7, N2 = Group((2,3,4,5,6,7), (3,7)(4,6),
(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)) and N3 ∼= S11. Hence

N{0..3} = N0 ∩ N1 ∩ N2 ∩ N3 = Group((2,3,4,5,6,7), (3,7)
(4,6), (10,14)(11,13)). Therefore the normalizer of G is gen-

erated by G and the normalizer of G in N{0..3} which is
computed by GAP4-command Normalizer. The program is
written in GAP programming language and the total runtime
is about 1 second. The runtime of the direct computation us-
ing Normalizer is about 57 seconds. Here we used a 300MHz
MMX Pentium machine under Linux.

Next example is K ∼= S22 and G =TransitiveGroup(22,48)
∼= M11 o S2, where M11 denotes the Mathieu group of de-
gree 11. G is imprimitive with two blocks of length 11
and the stabilizer of the blocks is isomorphic to M11 ×M11

acting on each blocks 4-ply transitive. G is generated by
(1,16,2,14,11,17,8,18,6,15,9,20)(3,22,10,19)(4,21,7,13,5,12)
and (1,16,6,19,9,20,11,17,5,14,8,22,4,13,3,12)(2,18)(7,15,10,
21). Put [p1, p2, · · · , p8] = [1, 12, 13, 2,14, 3, 15, 4]. The or-
bits of the stabilizer G1 are {1}, {2, 4, 5, 10, 7, 8, 11, 6, 3, 9}
and {12, 13, 20, 15, 14, 22, 21, 18, 16, 19, 17}. The stabilizer
G1,12,13,2,14,3= Group((15,19,21,16)(17,22,18,20), (15,18,21,
17)(16,20,19,22), (4,5,10,8)(6,9,7,11), (4,7,10,6)(5,9,8,11)) ∼=
Q8×Q8, a direct product of quaternion groups, and its orbits
longer than 1 are {4, 5, 7, 10, 9, 11, 8, 6} and {15, 19, 18, 21,
22, 20, 16, 17}. It acts regularly on them. The stabilizers G1,
G1,12, G1,12,13, G1,12,13,2 and G1,12,13,2,14 are doubly tran-
sitive on their orbits longer than 8. Any such association
scheme in the system of association schemes given by those
groups has a group of isomorphisms isomorphic to the sym-
metric group. Thus the permutation structure of G gives
that N{0..6} is the direct product of the groups of isomor-
phisms of the two association schemes given by G1,12,13,2,14,3

on its two orbits of length 8. On the other hand the regular-
ity of G1,12,13,2,14,3 implies that N{0..6} is the normalizer of
G1,12,13,2,14,3 in S8 × S8 on its two orbits of length 8. This
normalizer is computed following the algorithm in Lemma
1 in our program. Then N{0..8} is the stabilizer of [15, 4]

in N{0..6}. The runtime of this example is about 6 sec-
onds. It takes about 26066 seconds by direct computation
by Normalizer in GAP4.

222

5. EXPERIMENTS
Our program is written in GAP4 programming language, not
a compiled code. We used a 300MHz MMX Pentium ma-
chine under Linux.

There are 59 transitive groups of degree 22. We computed
the normalizers of all the transitive groups of degree 22 in
S22. It took about 280 seconds by our program and in max-
imum cases it took about 15 seconds to compute a normal-
izer. The isomorphisms of association schemes are computed
in symmetric groups. So it may be easy to compute nor-
malizers in the symmetric group by our method. We also
computed the 59 normalizers in the alternating group. Then
it took about 360 seconds.

Data of computation of some cases are shown in Table 1.
The times are given in seconds. The first column shows the
numbers of the transitive groups in GAP library. The second,
third and fourth columns give the computing times by our
method denoted by ”as”, GAP4 and Magma2.5 respectively.
In the cases of TransitiveGroup(22,i) with i= 15, 16, 17,
18, 19, 20, 24, 25, 31 and 40, we did not finished computing
by Normalizer directly but we computed more than 100
times longer before interrupting the computation than by
our method. All these groups are imprimitive with blocks
of length 11. Among other transitive groups of degree 22
the worst case is i=22 in Table 1

Table 1
normalizer of TransitiveGroup(22,i) in S22

i as GAP4 Magma2.5
59 3.6 0.7 0.2
58 2.4 0.9 0.2
57 7.5 1.2 0.2
56 7.4 0.5 0.2
55 7.4 0.5 0.2
54 6.8 0.5 0.2
53 13.5 0.5 0.2
52 12.4 1.0 0.2
51 13.3 0.5 0.3
50 12.7 0.5 0.8
49 13.0 0.5 0.3
48 8.2 26066.0 6596.2
47 5.4 0.5 10.8
46 4.9 0.5 1.4
45 4.9 0.4 2.9
44 9.1 28.2 922.1
43 9.2 30.0 15756.0
42 5.6 258.3 >17386.3
41 4.7 552.1
40 6.1 >57783.4
22 3.8 9611.8

We also computed the normalizers of all the transitive groups
of degree 21 in S21. There are 164 transitive groups of degree
21. It took about 20 minutes to compute all the normalizers
by our program. It took about 25 minutes to compute all
the normalizers in the alternating group. In these cases it
seemed hard to compute directly by Normalizer if a group
has a block of length 7. Computing data of some cases are
in Table 2.

Table 2
normalizer of TransitiveGroup(21,i) in S21

i as GAP4 i as GAP4

116 6 1731 91 4 366
110 5 1730 88 4 10962
109 129 1770 87 4 20662
108 5 1753 85 4 521
106 6 1725 82 4 10896
102 5 8936 78 3 41
101 86 1742 77 3 29
97 5 1726 72 4 20764
95 5 1733

Table 3
normalizers of perfect groups in Sn

order No name degree as GAP4

443520 M22 22 3 850
10200960 M23 23 4 1025

244823040 M24 24 5 1403
979200 1 Sp4(4) 85 251 130
604800 1 J2 100 147 268
647460 1 L(2,109) 110 126 136
571704 1 SL(2,83) 168 389 –
322560 23 192 394 –
15600 1 SL(2,25) 208 771 –

322560 27 256 3168 –

Table 3 shows computing times for the normalizers of some
perfect groups in the library of GAP. We ran GAP4 with an
option of memory 32MB and the symbol ”–” in the table
means that GAP4 could not extend the workspace any more
to accomplish the computation.

6. ABOUT COMPUTING ISOMORPHISMS
We note that if G is regular on Ω then the group of iso-
morphisms of the association scheme given by G is equal
to the normalizer of G in the symmetric group on Ω, since
the matrices A0, A1, · · · , Ad of the association scheme are
permutation matrices. As an extreme case we computed
the normalizer of the regular representation of an elemen-
tary abelian group of order 64 in the symmetric group. It
took 144 seconds by our method and 33 seconds by using
GAP-command Normalizer directly. We also computed the
cases of the regular groups of order 96. In most cases it
took from 300 to 400 seconds to compute a normalizer by
our program while it took from several to 100 seconds by
direct use of Normalizer. There were a few cases that could
not be computed in reasonable time by our program.

An association scheme is an algebraically combinatorial ob-
ject. Among the properties of association schemes stated in
Section 2, the fourth one is surely most algebraic. Our pro-
gram computing isomorphisms of association schemes uses
this property. The author gave an exposition about this fact
at the 9th annual meeting of JSSAC held in this year. but
there is no reference available for the present time. So we
will note some remarks about this property here. If an as-
sociation scheme is given by a regular representation of a
group, then the fourth property follows the multiplication
of the group. The normalizer of a permutation group leaves

223

the two-orbits of same length invariant. So if a group has
many two-orbits of same length, in our program we have to
compute the element σ stated in Section 2 which permutes
the two-orbits so many times in order to find all the isomor-
phisms without using this algebraic property. The regular
case seems purely algebraic and as stated above the direct
computation by Normalizer is usually 10 to 100 times as
fast as using our program. Hence we computed the groups
of isomorphisms of association schemes given by some tran-
sitive groups of degree 32 whose stabilizer of one point is
of order 2 as another example. Every two-orbit of these
groups is either of length 32 or 2× 32 and we can construct
many such groups from the groups of order 64 in GAP library.
As before we used Normalizer to compute the normalizers
in these groups of isomorphisms to obtain the normalizers
in the symmetric group. We compared the total runtime
of this method and the runtime of the direct computation
by Normalizer. In most cases the runtimes of the above
method were a few seconds and those of the direct compu-
tation were similar. But there were several cases that the
direct computation was more than 10 times as slow as the
above method. ¿From this aspect it is worth seeing the two-
orbits as an association scheme.

7. ACKNOWLEDGMENTS
The author would like to thank the referee for his kind com-
ments.

8. REFERENCES
[1] E. Bannai and T. Ito. Algebraic Combinatorics I :

Association Schemes. Benjamin/Cummings, Menlo
Park, CA, 1984.

[2] The GAP Group. GAP – Groups, Algorithms and
Programming, Version 4. Lehrstuhl D f Mathematik,
Rheinisch Westfälische Technisch Hochschule, Aachen,
Germany and School of Mathematical and
Computational Sciences, U. St.Andrews Scotland, 1997.

[3] A. Hanaki. Data of association schemes, published at
WWW. http://math.shinshu-u.ac.jp/˜hanaki, 1999.

[4] A. Hanaki and I. Miyamoto. Classification of
association schemes with 16 and 17 vertices. Kyushu J.
Math., 52:383–395, 1998.

[5] A. Hanaki and I. Miyamoto. Classification of
association schemes with 18 and 19 vertices. Korean J.
Comp. App. Math., 5:543–551, 1998.

[6] A. Hulpke. Konstruktion transitiver
Permutationsgruppen. Dissertation, RWTH-Aachen,
1996.

[7] B. Mckay. Practical graph isomorphism. In Proceedings
of the Tenth Manitoba Conference on Numerical
Mathematics and Computing, Vol. 1(Winnipeg, Man.,
1980), pages 45–87. Congressus Numerantium 30, 1981.

[8] H. Theißen. Eine Methode zur Normalisatorberechnung
in Permutationsgruppen mit Anwendungen in der
Konstruktion primitiver Gruppen. Dissertation,
RWTH-Aachen, 1997.

224

