
An Improvement of GAP Normalizer Function for
Permutation Groups ∗

Izumi Miyamoto
University of Yamanashi

4-3-11 Takeda Kofu 400-8511 Japan

imiyamoto@yamanashi.ac.jp

ABSTRACT
In GAP system it takes unreasonably long time to compute
the normalizers of some permutation groups, even though
they are of small degree. The author gave an algorithm
in [7, 8] to compute the normalizers of permutation groups
and particularly it worked smoothly for transitive groups
of degree up to 22. In 1999 GAP version 4 was released.
Since then the GAP system has been improved and in 2004
GAP4r4 had a special function to compute the normalizers
in the symmetric groups but it still has difficulties in com-
puting the normalizers of some permutation groups. It has
been also found that the author’s algorithm in [7, 8] has
difficulties in some groups of small degree but larger than
22. So the author will give two new programs improving the
computation of normalizers of transitive permutation groups
in the symmetric groups. One of them works comparatively
smoothly for the transitive groups of degree up to 30.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Alge-
braic Algorithms; G.2.1 [Discrete Mathematics]: Combi-
natorics; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms
Experimentation, Performance, Algorithms

1. INTRODUCTION
Among the computations of groups the algorithms for per-

mutation groups have been well studied. In practice it may
be rarely difficult to compute the normalizers of permuta-
tion groups but by our experiment using the GAP function
Normalizer, it was found that among the 36620 transitive

∗(Produces the permission block, copyright information and
page numbering). For use with ACM PROC ARTICLE-
SP.CLS V2.6SP. Supported by ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’06,July 9–12, 2006, Genova, Italy .
Copyright 2006 ACM 1-59593-276-3/06/0007 ...$5.00.

permutation groups of degree from 20 to 30 each of the nor-
malizers of 755 groups in the symmetric groups cannot be
computed within 10 hours. In [6] a polynomial-time algo-
rithm for computing normalizers of permutation groups is
shown under the condition that the groups in which the
normalizers are computed have restricted composition fac-
tors. This algorithm is very complicated and it has not
been implemented. In 2000, when the author presented the
algorithm in [7, 8], 22 was the largest degree of transitive
permutation groups in the data of the GAP library, while 30
is the largest now. The author’s program in [7, 8] written
in the GAP program language can compute the normalizers
of the transitive groups of degree up to 22 in the symmetric
groups smoothly but, in 14 cases of degree up to 30, cannot
compute the normalizer within 10 hours. We will give two
new programs written in the GAP language, one of which
can compute the normalizer of any transitive permutation
groups of degree up to 30 in the symmetric group within
30 seconds. The other one is faster to compute all these
normalizers. In our experiments we also had to compute
the normalizers of some subgroups of transitive groups and
we found various subgroups of which normalizers are rather
harder to compute than the given transitive groups. Such
hard groups have not been well specified yet. So we do not
check how our new programs work in groups of larger de-
gree except the examples written in [7, 8] but we mainly
restricted our interest to the transitive groups of degree up
to 30 in the present paper.

Let G and K be permutation groups on a set Ω of n points.
The normalizer of G in K is defined by Norm(K, G) = {k ∈
K|k−1Gk = G}. Let Sym(n) denote the symmetric group
of degree n. In [7, 8] the author used GAP version 3. Now it
is version 4r4 and has a special function DoNormalizerSA to
compute the normalizers of some imprimitive or intransitive
groups in the symmetric groups. GAP also has a special
function SubgpConjSymmgp computing a conjugating ele-
ment between two subgroups in a symmetric group. Here
we focused on the normalizers of transitive groups in the
symmetric groups. Normalizers of intransitive groups are
computed by a straightforward method considering the ac-
tion on each orbit in [7, 8]. Such normalizers are treated
in our programs by a similar method used in GAP func-
tion NormalizerParentSA and normalizers in non symmetric
groups are computed by simply taking the intersections of
those in symmetric groups with the non symmetric groups
in order to apply our algorithm recursively.

Suppose that G is imprimitive and has only one block of
length m containing some fixed point. Then Norm(Sym(n),

G) ⊆ Sym(m) o Sym(n/m), where Sym(m) o Sym(n/m) is
an appropriate wreath product of Sym(m) by Sym(n/m).
In GAP4r4 DoNormalizerSA invokes NormalizerParentSA to
compute the wreath product Sym(m) oSym(n/m) and then
computes the normalizer in this smaller group. In [7] it
is proved that the normalizer is contained in the automor-
phism group of the association scheme formed by G if G
is transitive. Here we give the definition of an association
scheme.

Definition. 1. ([1](2.1)) Let Ω be a set of n points and let
Ri(i = 0, 1, · · · d) be subsets of Ω × Ω. (Ω, Ri) is an associ-
ation scheme (or a homogeneous coherent configuration) if
it satisfies that

• R0 = {(x, x)|x ∈ Ω},

• Ω × Ω = R0 ∪ R1 ∪ · · ·Rd and Ri ∩ Rj = ∅ if i 6= j,

• for all Ri there exists i∗ in {0, 1, · · · , d} such that
{(x, y)|(y, x) ∈ Ri} = Ri∗ and

• for all Ri, Rj , Rk the number pi,j,k = #{z|(x, z) ∈
Ri, (z, y) ∈ Rj} is constant whenever (x, y) ∈ Rk.

Readers may refer to [1] for details of association schemes
and to [4, 5] for some computing results. However in this
paper an association scheme is always formed by a transitive
group G and {R0, R1 · · · , Rd} is the set of the orbits of G
on Ω × Ω, which we call 2-orbits. Then each of its auto-
morphisms is a permutation on Ω preserving the 2-orbits as
a whole, which means that it may move one 2-orbit to an-
other. Both the automorphism group of the scheme and the
normalizer of G are computed by backtrack methods. So the
algorithm in [7, 8] needs backtrack methods twice to com-
pute normalizers. The wreath product Sym(m) oSym(n/m)
is given as the automorphism group of a typical associa-
tion scheme. So the GAP special function can be seen us-
ing only such typical association schemes to avoid a back-
track computation. Following this idea the author consid-
ered an algorithm using a lemma in [7] and not using as-
sociation schemes. This algorithm will be called Algorithm
NormA. The program of this algorithm will be also denoted
by NormA. The aim of this algorithm is to attach a small
program to the GAP function Normalizer to improve it to
some extent because our program in [7, 8] computes nor-
malizers faster than GAP in general or on average but much
slower in some cases. As a result NormA computes faster
than the program in [7, 8] in general but sometimes slower
than GAP for the transitive groups of degree up to 30.

In the GAP function SubgpConjSymmgp, computing an el-
ement conjugating subgroups H and K in the symmetric
group, it is considered that if H is imprimitive and has only
one block B containing some fixed point, a conjugating ele-
ment should move the block system BH to the correspond-
ing block system of K. So in this function the action of
H on BH and the action of the setwise stabilizer HB on B
are computed to restrict the choice of the conjugating ele-
ment. In another algorithm, which we will call Algorithm
NormB, we use a block of the automorphism group of the
association scheme formed by G similarly in Proposition 1.
The computing time varies in each experiment. NormB can
compute the normalizer of any transitive group in the sym-
metric group of degree up to 30 within 30 second on average.
The maximum computing time was about 1 minute in our
experiments.

For our experiments we used computers under Linux with
CPU Xeon 2.8GHz and 1GB memory. We used ParGAP [2]
to speed up our experiments.

2. ALGORITHM
Let G be a transitive permutation group on a set of Ω of n

points. We will compute the normalizer N =Norm(Sym(n),
G). As is noted in [7], it is easily seen that N preserves the
2-orbits of G on Ω×Ω. So the normalizer N of a transitive
group G is contained in the automorphism group A of the
association scheme formed by G. Hence any block B of A
is also a block of both of N and G. So if A is imprimitive,
we compute the action Ḡ of G on the set of blocks BG and
the action GB |B of GB on B, where GB is the the setwise
stabilizer of B in G. We define Ā and AB |B similarly.

Proposition 1. Let N̄ ′ =Norm(Ā, Ḡ) and let N ′
B = Norm

(AB |B, GB |B). Then N is contained (N ′
B oN̄ ′)∩A, where the

points of each block of BG are arranged so that B = [b1, b2,
· · · , bm] and Bg = [bg

1, b
g
2, · · · , bg

m] for some g ∈ G.

Proof. Clearly N̄ ⊆ N̄ ′ and NB |B ⊆ N ′
B . Let x ∈ N

and suppose Bgx = Bh. Then there exists n′ ∈ N ′
B o N̄ ′

such that x̄n̄′ = 1̄ and that bhn′
i = bg

i for 1 ≤ i ≤ m by the
definition of wreath product. Suppose that bgx

i = bh
j . Then

(bg
i)xn′

= bg
j . Since bgxh−1

i = bj , there exists kg ∈ N ′
B o N̄ ′

such that kg = xn′ on Bg leaving all points not in Bg fixed.
Then xn′ is the product of all such kg. So we have x ∈
N ′

B o N̄ ′.

We use this algorithm recursively. We also use the following
lemma which is the first step of the lemma in [7]. The lemma
in [7] is a little complicated. So we will give an easy proof
here. Lemma 3 is an elementary well-known lemma which is
required for the next step of our algorithm. So we will also
give it here.

Lemma 2. Suppose G ⊆ K. Let O be a common orbit
of G and K, let p ∈ O and let Kp be the stabilizer of p in
K. Then Norm(K, G) is generated by Norm(Kp, G) and G,
which implies that Norm(K, G) = GNorm(Kp, G).

Proof. Let x ∈Norm(K, G). Then there exists g ∈ G
such that px = pg. So xg−1 ∈Norm(K, G)p =Norm(Kp, G).
Therefore Norm(K, G) is generated by Norm(Kp, G) and G.
In fact Norm(Kp, G) normalizes G, so the last assertion
Norm(K, G) = GNorm(Kp, G) follows.

Lemma 3. Let C, D, E and F be groups. Suppose that
C = DE and D ⊆ F . Then C ∩ F = D(E ∩ F).

Here, if Kp and Gp also have a common orbit O′, Norm(Kp,
Gp) = Gp Norm(Kp,p′ , Gp), where p′ ∈ O′ and Kp,p′ is the
pointwise stabilizer of p and p′. Then we can proceed to the
second step as stated below. Since Norm(Kp, G) normalizes
Gp, Norm(Kp, G) ⊆ Norm(Kp, Gp). So

Norm(Kp, G) = Gp(Norm(Kp,p′ , Gp) ∩ Norm(Kp, G))

= GpNorm(Kp,p′ , G),

since Gp ⊆Norm(Kp, G). Hence

Norm(K, G) = GNorm(Kp, G)

= GGpNorm(Kp,p′ , G)

= GNorm(Kp,p′ , G)

We may go forward to the next step, if Kp,p′ and Gp,p′

have a common orbit O′′. In the second step, for instance,
Norm(Kp.p′ , G) ⊆ Norm(Kp,p′ , Gp) ⊆Norm(Kp,p′ , Gp,p′). So
we may compute the first normalizer as the normalizer of G
in the second or third normalizer once they are computed.

In NormA we heuristically compute Norm(Ap,··· ,p′′ , Gp,··· ,p′′)
in the final step in usual cases and we compute the normal-
izer of G in this normalizer, because it is faster in most cases.
We use various heuristics in NormA which we will not explain
in detail. In NormB we use NormA with less heuristics, which
will be denoted by NormA’ and we will explain here the
heuristics used in NormA’. If Gp,··· ,p′′ is an identity group,
we seek Gp,··· ,p′′′ so that its moved points contains those of
Ap,··· ,p′′ and then compute Norm(Ap,··· ,p′′ , Gp,··· ,p′′′). If G
is intransitive, NormalizerParentSA computes, for instance if
G has l orbits of length m, the wreath product Sym(m) o
Sym(l) and the direct product of such wreath products. Fur-
thermore if m ≤ 30, by TransitiveIdentification actions of G
on these orbits are identified to some classified transitive
groups and the normalizer of the actions are also computed.
Then using this data, more restricted wreath products are
constructed. In NormA’ we apply NormalizerParentSA to
Gp,··· ,p′′ to obtain the direct product of these wreath prod-
ucts and compute the normalizers above in the intersection
of Ap,··· ,p′′ and this direct product. If any orbit of Gp,··· ,p′′

is of length at most 2, then we use Gp,··· ,p′′′′ instead of
Gp,··· ,p′′ in the above procedure, where p′′′′ is the previous
point to p′′. Here is a rough GAP-like code of NormB.

NormB:=function (K, G)

A := auto_group(association_scheme(G));

b := AllBlocks(G);

all blocks containing the point 1

if b = [] then

N := NormA’(K, G);

return N;

else

B := b[k];

choose the k-th block which is maximal

R := List(B^G , function (B’)

return

RepresentativeAction(G, B[1], B’[1]);

end);

B^G := List(R, function (g)

return List(B, function (p)

return p ^ g;

end);

end);

rearrange the points of every B’ in B^G by g

a1 := Action(A, B^G, OnSets);

g1 := Action(G, B^G, OnSets);

n1 := NormB(a1, g1);

a2 := Action(Stabilizer(A, B, OnSets), B);

g2 := Action(Stabilizer(G, B, OnSets), B);

n2 := NormB(a2, g2);

W := WreathProduct(n2, n1);

perm := MappingPermListList([1 .. n],

Concatenation(B^G));

W := W ^ perm;

make an appropriate wreath product

Table 1: Computing times of the Normalizers of
Transitive Groups in Sym(n), 20 ≤ n ≤ 30

time range DoNorm AS NormA NormB
∗ ≤0.1sec 10510 1829 125 5

0.1sec< ∗ ≤0.2sec 11728 7231 1220 33
0.2sec< ∗ ≤0.5sec 5433 22898 24260 1266
0.5sec< ∗ ≤1sec 2200 2973 9947 9831
1sec< ∗ ≤2sec 1098 629 646 22278
2sec< ∗ ≤5sec 1015 363 236 2442
5sec< ∗ ≤10sec 621 182 68 122
10sec< ∗ ≤30sec 834 232 39 643
30sec< ∗ ≤1min 381 126 14 0
1min< ∗ ≤2min 480 40 29 0
2min< ∗ ≤5min 486 30 25 0
5min< ∗ ≤10min 357 6 5 0
10min< ∗ ≤30min 348 9 4 0

30min< ∗ ≤1h 114 12 2 0
1h< ∗ ≤2h 63 15 0 0
2h< ∗ ≤5h 112 24 0 0
5h< ∗ ≤10h 85 7 0 0

10h< ∗ 755 14 0 0

N := NormA’(Intersection(A, W), G);

return Intersection(N, K);

fi;

end;

3. EXPERIMENTS
In GAP library [3] there is a list of transitive permutation

groups TransitiveGroup(n, k) up to degree n = 30. There
exist 36620 transitive groups of degree n, 20 ≤ n ≤ 30. We
computed the normalizers of these groups G in the sym-
metric groups Sym(n) using three programs. The first one
is the GAP special function DoNormalizerSA, the second is
NormA which uses neither association schemes nor Propo-
sition 1 but is heuristically finely tuned up, and the last is
NormB explained in the previous section. DoNormalizerSA is
abbreviated to DoNorm. In Table 1 we show the timings of
these programs. We also show in Table 1 the timings of the
program given in [7, 8] for reference, which is denoted by AS
in the third column. The first column of Table 1 shows the
time ranges and the remaining columns show the numbers
of groups of which normalizer in the symmetric groups in
each time range. NormA is the fastest to compute all the
normalizers of the transitive groups of degree between 20
and 30. We note that DoNorm cannot compute each of the
normalizers of 755 transitive groups within 10 hours. So we
stopped computing in 10 hours. It takes 57 days for DoNorm
to compute the other 35865 normalizers and it should take
more than 1 year for DoNorm to compute all the 36620 nor-
malizers. It takes 32 days, 10.5 hours and 17.4 hours for
programs AS, NormA and NormB to compute all the 36620
normalizers respectively. In Table 2 we show the total com-
puting time of each degree. In Table 3 the timings of the
examples explained below are shown. The first and the sec-
ond columns denote n and k of TransitiveGroup(n, k) in the
GAP library. In Table 4 how the computing time varies is
shown for some groups by NormA. It took 70 seconds in trial

Table 2: Computing times of the Normalizers of
Transitive Groups of each degree n in Sym(n), 20 ≤
n ≤ 30

n num DoNorm NormA NormB
20 1117 744min 4.8min 14min
21 164 1951min 0.6min 1.3min
22 59 60min (10) 0.2min 0.5min
23 7 86sec 0.6sec 4.6sec
24 25000 39h (26) 3.2h 9.5h
25 211 3255min (6) 1.2min 2.2min
26 96 10h (24) 0.09h 0.23h
27 2392 200h (202) 1.9h 0.7h
28 1854 263h (256) 0.9h 1.1h
29 8 0.4sec 1.4sec 10.1sec
30 5712 32day(231) 0.18day 0.23day
tot. 36620 57day(755) 0.44day 0.71day

Remark. (num) in the third column shows the number of
groups not computed within 10 hours.

Table 3: Some computing times of typical examples
(in seconds)

n k DoNorm NormA NormB
28 1375 > 36000 0.3 29
30 834 15 3087 1.2
30 841 16 3149 1
28 321 858 1746 4
27 1518 > 36000 0.3 1

2 to compute the normalizer of TransitiveGroup(30, 4912) by
NormA, which was the longest in our experiments by NormA.

Example 1: Let Ω = {1, 2, · · · , n}. G =TransitiveGroup(28,
1375). |G| = 3111696. Set N =Norm(Sym(28), G). Then
|N | = 6223392. G has only one block of each of length
7 and 14 containing the point 1. DoNorm and NormA use
the block of length 7. So W = Sym(7) o Sym(4), but in
NormB the block of length 14 is used. Then it is hard
to compute Norm(W, G) directly. Let A be the automor-
phism group of the association scheme formed by G. Then
|A| = 5161930260480000. W1, A1 and G1 have a com-
mon orbit of length 6 containing the point 2. G1,2 has
orbits of length 7 and 14 and fixes the remaining points.
In NormA we invoke NormalizerParentSA using G1,2 to com-
pute the normalizer of each orbit. Let W ′ be the direct
product of these groups. Then |W1,2 ∩ W ′| = 8890560
and Norm(W1,2 ∩ W ′, G1,2) is easily computed. From this
normalizer we obtain N in NormA. Let B be the block
of length 14. In NormB, Norm(Sym(14), GB |B) is com-
puted. Here GB |B is transitive on B. So we compute
the automorphism group of the association scheme formed
by GB |B and it has a block of length 7. Thus this nor-
malizer is computed by NormB recursively. Then we have
|A ∩ N ′| = 24893568 and Norm((A1,2 ∩ N ′)1,2, G1,2) easily.
Now Norm((A1,2 ∩N ′)1,2, G) is computed as the normalizer
of G in Norm((A1,2∩N ′)1,2, G1,2) and consequently N is gen-
erated this normalizer and G. We note that |G1,2| = 18522.

Example 2: G :=TransitiveGroup(30, 834), |G| = 14580.
Set N =Norm(Sym(30), G). Then |N | = 29160. G has
only one block of each of length 3, 6 and 15 containing the

point 1. In DoNorm the block of length 3 is used and so
is in NormA. Set W = Sym(3) o Sym(10). Then it take
15 seconds for DoNorm to compute N =Norm(W, G). For
NormA the stabilizers W1 and G1 have a common orbit of
length 2 containing the point 2. So Norm(W1,2, G) and G
generate N and in NormA we compute Norm(W1,2, G1,2) in
order to obtain Norm(W1,2, G) as the normalizer of G in
Norm(W1,2, G1,2). But it takes about 50 minutes to com-
pute Norm(W1,2, G1,2). Here we remark that in this case
Norm(W1,2, G) and Norm(W1,2, G1) are rather easily com-
puted. Let A be the automorphism group of the association
scheme formed by G. Then |A| = 2418647040. In NormB
the block B of length 15 is used. Set N ′ =Norm(AB |B,
GB |B)oNorm(Ā, B̄). Then |A∩N ′| = 9447840 and (A∩N ′)1
and G1 has a common orbit of length 2 containing the point
2. So using Lemma 2 similarly as in NormA we compute
Norm((A ∩ N ′)1,2, G1,2). This normalizer is computed eas-
ily. Next we compute Norm((A∩N ′)1,2, G) as the normalizer
of G in Norm((A ∩ N ′)1,2, G1,2), which is also easy, and we
obtain N from Norm((A ∩ N ′)1,2, G) and G. However it
happens that Norm(A1,2, G) is also easily computed directly
in this case. We note that G1,2 is of order 35 and has 9
orbits of length 3. A similar situation occurs in Transitive-
Group(30.841).

Example 3: G =TransitiveGroup(28, 321). In this case
|G| = 5376, |N | = 32256 and |A| = 192631799808. G has
only one block B of length 4 containing the point 1. So
W = Sym(4) o Sym(7). It is a little hard for DoNorm to
compute Norm(W, G). W1, A1 and G1 have a common orbit
of length 3 containing the point 2. Then it is a little harder
for NormA to compute Norm(A1,2, G) and Norm(W1,2, G1,2).
In NormB, Ḡ =Action(G, BG) and N̄ ′ =Norm(Sym(7), Ḡ)
are computed. We have |Ḡ| = 7 and |N̄ ′| = 42. GB act
on B as an alternating group. So N = Sym(4) o N̄ ′. How-
ever it happens that A = N in this case. Then we compute
Norm(A1,2, G1,2) and obtain Norm(A1,2, G) as the normal-
izer of G in this normalizer easily. We note that G1,2 is
elementary abelian of order 64 and has 6 orbits of length 4.

Example 4: G =TransitiveGroup(27, 1518). |G| = 279936.
|N | = 1679616. G has only one block of length 9 contain-
ing the point 1. So W = Sym(9) o Sym(3). It is hard for
DoNorm to compute Norm(W, G). W1 and G1 have a com-
mon orbit of length 8 containing 2. In NormB we compute
N ′ as above and |A ∩ N ′| = 483729408. Then the normal-
izer is easily computed. G1,2 has 2 orbits of length 9 and
fixes remaining 7 points in Ω\{1, 2}. In NormA, Normalizer-
ParentSA is invoked using G1,2 to compute the normalizer
of the action of G1,2 on the orbit of length 9 and also to
compute a element interchanging the two orbits of length 9.
Let W ′ be the group generated by them and the symmetric
group on the 7 fixed points, which is small enough of order
1881169920. So the remaining computation goes smoothly.
We note |G1,2| = 1296 = 24 × 34.

4. CONCLUDING REMARKS
As is seen in Table 1 in programs DoNorm, AS and NormA

most normalizers are computed within 0.5 second, while in
NormB most of them are computed between 1 and 2 seconds.
In particular the GAP special function DoNorm computes
most of them within 0.2 second. So if NormB is ten times
slower than DoNorm in usual cases, it will be an unbearable
defect of NormB for groups of large degree, since it may take
longer time for DoNorm to compute such normalizers. Table

Table 4: Some examples such that computing time
varies in 3 trials by NormB (in seconds)

n k 1 2 3 n k 1 2 3
27 1542 1 43 42 28 1394 27 27 1
28 1828 2 27 27 30 4092 26 2 28
30 4099 26 27 3 30 4912 2 70 2
30 5325 26 3 26 30 5495 27 2 26
30 5623 27 2 27 30 5649 28 2 27

Table 5: Some normalizers of groups of degree 64
and order 128 (in seconds)

No. DoNorm AS NormA NormB
1201 17 1 281 3
1202 15 1 1553 3
1203 10 1 46 3
1204 1687 1 9910 3
1205 209 2 19 3
1206 19 1 1644 3
1207 1755 8 86 10
1208 158 8 1442 10
1209 6 1 32 3
1210 117 8 1438 10
1211 12 1 8033 3
1212 2399 3 9463 5
1213 5 2 35 3
1214 785 1 8084 3
1215 643 2 2319 4
1216 88329 2 ? 3

Table 6: Some normalizers of perfect groups in Sn

(in seconds)
order No. deg DoNorm AS NormA NormB

979200 1 85 0.2 11 7 7
604800 1 100 0.3 5 4 24
647460 1 110 2 25 47 96
571704 1 168 15 32 428 1744
322560 23 192 1953 29 2888 1644
15600 1 208 16 49 1766 1013

322560 27 256 63 168 5686 6318

Table 7: Some computing times of conjugating ele-
ments and normalizers (in seconds)

n k conj. Norm
28 157 5472 9023
28 160 2405 5596
28 321 771 744
27 187 557 996
27 163 542 962
27 160 472 1876
28 392 419 1421

3 shows that there exist different groups of which normaliz-
ers are hard to compute for every programs. In this sense it
may be difficult to say what program is the best one. How-
ever NormB seems best for groups of degree up to 30 or a
little more. Some data of groups of large degree are shown
in Tables 5 and 6. The groups listed in these tables are
taken from Table 3 in [7] and Table 2 in [8]. Future work
may be needed to determine whether NormB is adaptable
to groups of higher degree. The examples of Table 6 can
be computed quickly by DoNorm. But it is sure that there
exist groups of which normalizers are not easily computed
by DoNorm. It may be preferable to store in GAP the pre-
computed normalizer of each of the transitive permutation
groups of small degree arising in the catalog, currently the
transitive groups of degree at most 30. Then given a tran-
sitive group G of small degree n, the normalizer of G in
Sym(n) is obtained by simply finding a permutation which
conjugates G to the equivalent permutation group in the
catalog. Table 7 lists execution times for determining the
normalizer of G by this approach. The computing time of
finding conjugating elements may vary significantly depend-
ing on the conjugating element. Table 7 shows it takes more
than 1 hour to compute a conjugating element between two
permutation groups isomorphic to TransitiveGroup(28, 157)
or to compute its normalizer.

5. REFERENCES
[1] E. Bannai and T. Ito. Algebraic Combinatorics I:

Association Schemes. Benjamin/Cummings, Menlo
Park, CA, 1984.

[2] G. Cooperman. Parallel GAP/MPI (ParGAP/MPI),
Version 1, College of Computer Science, Northeastern
University, 1999,
http://www.ccs.neu.edu/home/gene/pargap.html.

[3] The GAP Groups. GAP - groups, algorithms and
programming, version 4. Lehrstuhl D für Mathematik,
Rheinisch Westfälische Technische Hochschule, Aachen,
Germany and School of Mathematical and
Computational Sciences, Univ. St. Andrews, Scotland,
2000.

[4] A. Hanaki. Data of association schemes, published at
www. http://kissme.shinshu-u.ac.jp/as/, 1999∼.

[5] A. Hanaki and I. Miyamoto. Classification of
association schemes of small order. Discrete Math.,
264:75–80, 2003.

[6] L.M. Luks and T. Miyazaki. Polynomial-time
normalizers for permutation groups with restricted
composition factors. In Proceedings of the 2002
International Symposium on Symbolic and Algebraic
Computation, 176–183, 2002.

[7] I. Miyamoto. Computing normalizers of permutation
groups efficiently using isomorphisms of association
schemes. In Proceedings of the 2000 International
Symposium on Symbolic and Algebraic Computation,
200–204, 2000.

[8] I. Miyamoto. Computing isomorphisms of association
schemes and its applications. J. Symbolic Comp.,
32:133–141, 2001.

