
Article Submitted to Journal of Symbolic Computation

Computing Isomorphisms of Association
Schemes and its Application

Izumi Miyamoto1

1Department of Computer Science, Yamanashi University, 4-3-11, Takeda,
Kofu, 400-8511, Japan

1. Introduction

Using computers, Hanaki and I were classifying association schemes of small or-
der for a past few years (Hanaki and Miyamoto (1998,1998,2000),Hanaki (1999)).
In the present paper we will discuss about computing isomorphisms of associ-
ation schemes. We compute isomorphisms of an association scheme using its
relation matrix defined in the following section. A relation matrix can be seen
an adjacency matrix of a labeled graph. If we consider an isomorphism from an
association scheme to itself, the isomorphism may be given by a permutation on
the set of vertices of the labeled graph. In our case we generally consider that
an isomorphism may permute also the labels of the graph. The most familiar
examples of association schemes are given by transitive permutation groups on
the set of vertices. Then an element of the transitive group is an isomorphism
of the former type. An element of the normalizer of the group is also an isomor-
phism and it may permute the labels. The author gives an algorithm to speed up
to compute normalizers of permutation groups as an application of computing
isomorphisms of association schemes in Miyamoto (2000). In the present paper
we will also give some more inspection about this algorithm. In the following
section we will define association schemes and will introduce necessary proper-
ties. For more basic properties, readers may refer to Bannai and Ito (1984). For
graph isomorphisms and computing normalizers readers may also refer to Mckay
(1981) and Theißen (1997).

A program computing isomorphisms of labeled graphs is not familiar and if we
do not consider the algebraic property of association schemes, we have to com-
pute combinatorially large numbers of permutations on the labels in some graphs.
In fact our old program was sufficient to compute an isomorphism from one asso-
ciation scheme to another in the classification of the isomorphism classes stated
above but sometimes it took too much time to compute all the isomorphisms of
an association scheme to itself. The labeled graph given by an association scheme
is regular with respect to each label. This restricts the permutations of isomor-
phisms on the labels. If an association scheme is defined by a transitive group

1

I. Miyamoto: Isomorphisms of Association Schemes 2

of order equal to its degree (i.e. regular permutation group) or equal to twice of
its degree, then the valency of each label is equal to one in the former case or
equal to one or two in the latter case. As we mentioned above, isomorphisms are
related to the normalizer of a group if the association scheme is defined by it. An
association scheme defined by a regular group is just the regular representation
of the group. So it is purely a group theoretic object and the group algorithm
programming language GAP4 computes its normalizer rather quickly in this case.
But in the other case neither GAP4 nor Magma2.5 can compute the normalizer
so quickly as is shown in tables in Section 4. Although we used some more prop-
erties like orders of group elements in our old program, the performance was not
good. We improved our program to speed up the computation of isomorphisms
using the algebraic property of association schemes. Our program is written in
the group algorithm programming language GAP.

2. Association schemes

Let X = {x1, x2, · · · , xn} be the set of vertices. Then an association scheme
(X, {Ri}0≤i≤d) is defined as follows.

Definition: (X, {Ri}0≤i≤d) is an association scheme if and only if

1. R0 = {(x, x)|x ∈ X},
2. {R0, R1, · · · , Rd} is a partition of X ×X,

3. for all Ri there exists Ri′ such that Ri′ = {(y, x)|(x, y) ∈ Ri},
4. for all Ri, Rj, Rk and for all (x, y) ∈ Rk, there exists a constant number pijk

such that

pijk = #{z ∈ X|(x, z) ∈ Ri, (z, y) ∈ Rj, (x, y) ∈ Rk}.

Then the number n of the vertices X is called the order of the association
scheme and Ri is called a relation. If we fix an arrangement of the vertices
X = {x1, x2, · · · , xn}, we can define matrices A0, A1, · · · , Ad by

the (j, k)-entry of Ai =

{
1 if (xj, xk) ∈ Ri

0 otherwise

The matrix Ai is called an adjacency matrix of the association scheme The adja-
cency matrices satisfy the following properties and these properties are equivalent
to the definition of an association scheme.

1. Ai has {0, 1}−entries. A0 =identity matrix.

2. A0 + A1 + · · ·+ Ad = J(all 1 matrix)

3. For all i there exists i′ such that tAi = Ai′ .

4. AiAj =
∑

0≤k≤d pijkAk

I. Miyamoto: Isomorphisms of Association Schemes 3

Then Ai has constant column and row sum pii′0. The sum is called its valency.
The matrix A =

∑
0≤k≤d kAk is called the relation matrix of the association

scheme. By an association scheme A we mean the association scheme of which
relation matrix is A in the present paper.

Let B be another association scheme. Then two association schemes A and
B are isomorphic if B = P−1AσP for some permutation matrix P and some
permutation σ on the set {1, 2, · · · , d} of relation numbers, where Aσ is the
matrix obtained by rewriting each entry i to iσ in A. The automorphism group of
A is the permutation group generated by the permutation matrices P satisfying
A = P−1AP and it is denoted by Aut(A).

3. Computing isomorphisms of association schemes

We consider an association scheme by its relation matrix, when we compute
isomorphisms. We say simply an isomorphism if it is an isomorphism from an
association scheme to itself. We use a backtrack algorithm to compute isomor-
phisms. For an association scheme A, firstly we compute Aut(A), which can
be seen as the automorphism group of a labeled graph. So we applied usual
algorithms computing the automorphism group of a graph to our case. Set
H = Aut(A). We simply set X = {1, 2, · · · , n}. We consider a chain of stabilizers
H ⊇ H1 ⊇ · · · ⊇ H1,2,···i−1 ⊇ H1,2,···,i−1,i ⊇ · · · ⊇ H1,2,···,n = 1. The basic strategy
is to obtain a set of the representatives of the cosets in H1,2,···,i−1/H1,2,···,i−1,i for
each i ∈ 1, 2 · · · , n. So we control the backtrack algorithm not to compute all the
elements but to compute only one element in each coset stated above. We will
show how to compute an automorphism which is a permutation on {1, 2, · · · , n}.
Suppose that a portion of a permutation is constructed up to the following stage
which may be extended to an automorphism.

(
i1 i2 · · · ir ∗ · · · ∗
1 2 · · · r r + 1 · · · n

)

The set {r+1, · · · , n} is partitioned so that any two vertices x and y in each cell
satisfy that both (j, x) and (j, y) lie in a same relation for each j in {1, 2, · · · , r}.
This means that the (j, x)-entry and the (j, y)-entry of the relation matrix A
coincide with each other for each j in {1, 2, · · · , r}. This partition is computed
in advance and we call this the r-th partition of A. Then the set of the n − r
vertices in the ∗-part of the permutation is similarly partitioned so that any two
vertices x′ and y′ in each cell satisfy that the (ij, x

′)-entry and the (ij, y
′)-entry

of the relation matrix A coincide with each other for each ij in {i1, i2, · · · , ir}.
If an automorphism is constructed from this portion-of-permutation, the ∗-part
should be arranged so that these two partitions coincide with each other, which
means that the first r rows of A is invariant under the action of this portion-of-
permutation. In fact this was done in our program when ir was chosen correctly.
Now we choose a vertex ir+1 from the cell of the latter partition which corre-
sponds to the cell of the r-th partition containing the vertex r + 1. Then we

I. Miyamoto: Isomorphisms of Association Schemes 4

will check the partitions of the next stage. The partition of the next stage is
computed by isolating the vertex ir+1 from the cell and taking the refinement
of the partition of the last stage by the values of the (ir+1, ∗)-entries of A for
all ∗ not contained in {i1, i2, · · · , ir+1}. If this new ∗-part can be re-arranged as
above so that the refined partition coincides with the (r + 1)-th partition, then
we will go forward to the next stage. Otherwise we choose a next candidate from
the cell and if all the candidates are exhausted, then the backtrack algorithm
works. We note that this re-arrangement leaves each cell of the partition in the
previous stage invariant. So it preserves the invariance of the first r rows of A
by the portion-of-permutation.

Secondly we compute isomorphisms which move relations. There are d + 1
relations in A. The first relation which is numbered by 0 is the identity relation.
So it remains fixed by any isomorphism. Hence an isomorphism is given by a
couple of permutations (σ, g), where σ permutes the relations {1, 2, · · · , d} and
g permutes X = {1, 2, · · · , n}. We note that (σ, g) is an automorphism if and
only if it is an isomorphism and σ = 1. If (σ, g) and (τ, h) are isomorphisms,
then (στ, gh) is an isomorphism. So the set of all the isomorphisms defines two
groups. One consists of the first entries of the (σ, g)’s which acts on the relations
and the other consists of the second entries which acts on X. Hence in order
to obtain the first group, we only compute a set of the representatives of the
similar cosets for the group on the relations as those for the group on X in the
previous paragraph. If (σ, g) and (σ, h) are isomorphisms, then (1, gh−1) is an
automorphism. Since we have computed Aut(A) in the previous paragraph, it is
sufficient to compute one isomorphism (σ, g) for each σ from the representatives.
We compute each σ as a permutation on the relations which leaves the constants
pijk invariants and then try to find a g which gives an isomorphism by a similar
method stated in the previous paragraph. If we can not find a g, then the σ is
rejected and we proceed to compute next σ by the backtrack algorithm.

We compute isomorphisms using partitions as above. Suppose that we have
computed a permutation on the relations up to the following stage.

(
i1 i2 · · · ir ∗ · · · ∗
1 2 · · · r r + 1 · · · d

)

The set {r+1, · · · , d} is partitioned in advance and the ∗-part is also partitioned
and arranged so that these two partitions coincide with each other. The r-th
partition of this case is obtained so that any relations u and v in each cell satisfy
pujk = pvjk for all k ∈ {1, 2, · · · , r} and for all j ∈ {1, 2, · · · , k} in our program.
Choose a relation ir+1 in the cell of the latter partition which corresponds to
the cell of the former partition containing the relation r + 1. We compute the
partition of the ∗-part of the next stage by isolating the relation ir+1 from the
cell of the last partition and taking its refinement by the values p∗itir+1 with
1 ≤ t ≤ r + 1 for all ∗ not contained in {i1, i2, · · · , ir+1}. The partition for the
set {r + 2, · · · , d} is computed similarly in advance and we try to arrange the
new ∗-part so that the partitions of this stage coincide with each other, leaving

I. Miyamoto: Isomorphisms of Association Schemes 5

each cell of the previous partition invariant in order to maintain the coincidence
of the first r relations of A by the computing permutation. The first partition is
given by the valencies pii′0 and i = i′ or not.

4. About the computation of isomorphisms

The notion of an association scheme may not be so familiar. There are no refer-
ences about algorithms to compute isomorphisms of association schemes.

Let G be a transitive group on the set X. G acts on G×G by moving (i, j) to
(ig, jg) in X ×X for g ∈ G. Then the orbits of G on X ×X give an association
scheme (cf. Bannai and Ito (1984)). The normalizer of G in a group K is defined
by

NK(G) = {h ∈ K|h−1Gh = G}.
Hence any element h in the normalizer of G moves each orbit of G on X ×X to
another, or it may fix some orbits. So h induces a permutation τ on the set of the
orbits of G on X ×X and the couple (τ, h) is an isomorphism of the association
scheme defined by G. Hence the group given by the permutations on X of the
isomorphisms contains the normalizer. Let A be the association scheme given by
G, let N be the normalizer of G in the symmetric group on X and let I be the
group of the permutations on X of the isomorphisms of A. Then N = NI(G).
We can compute N by using software package GAP4 or Magma2.5 directly. Our
program computing isomorphisms is written in GAP4 language. We compute I
and then compute NI(G) using GAP4. We examine our algorithm computing iso-
morphisms by comparing these two methods of computing normalizers. As a
consequence the algebraic structure is not used generally in computing normal-
izers in GAP or Magma and our method is from 10 to 100 times as fast as direct
computation by GAP or Magma in some cases shown below.

Suppose that the order |G| of G is equal to the size n = |X| of X. This means
that G is regular on X and all the valency of A is 1. In this case A is merely
the regular representation of G. So it is not necessary to consider association
schemes intensionally. Hence we considered groups with |G| = 2|X|. In this case
the valencies of A are at most 2. So if the algebraic structure of the orbits of G on
X ×X is not considered, combinatorial explosion may occur. We can construct
such groups by taking the coset representation of a group of order 2|X| by its
subgroup of order 2 not contained in its center. In GAP library there are many
groups of small orders. In particular we used some groups of order 64 and 128
from the GAP library to construct transitive permutation groups of degree X = 32
and 64 respectively.

We computed 97 examples of degree 32. The some timings of computations
are in the table for degree 32. The number in the column ”No” in the table
means that the group comes from the group of the number in the GAP library.
The ”I+G” column shows the timings of computation using isomorphisms. The
”GAP” column shows the timings of the direct computation by GAP4 and the

I. Miyamoto: Isomorphisms of Association Schemes 6

”Magma” column by Magma2.5. The times are in seconds and we used 300MHz
Pentium II machine under Linux. The 88 normalizers are computed by ”I+G”
within from 2 to 5 seconds. The remaining 9 cases are shown in the table. By
GAP 12, 22, 39 and 59 normalizers are computed within 1, 2, 5 and 10 seconds
respectively. By Magma the timing varies very much in every computation but
27, 55, 61, 65, 75 and 86 cases are within 0.2, 1, 2, 5, 10 and 20 seconds re-
spectively in one trial. The two columns under ”Magma” in the table show that
the computation was done twice in some cases. We also give a timing table for

Table 1: Table for degree 32

No. I+G GAP Magma No. I+G GAP Magma
69 12 6 0.3 36 3 421 77
73 21 8 8 37 3 3387 5
75 12 6 0.4 60 4 531 0.2
77 30 3 5 90 4 236 6
78 12 24 0.4 91 4 354 8
89 12 2 0.4 93 4 750 78

114 8 4 0.2 100 4 885 313
130 12 11 4831 25 137 4 694 12 27
133 12 9 1 12 139 4 651 300 13

groups of degree 64. We computed by GAP twice and by Magma three or four
times. In some cases the computation was interrupted and the timing till the
interruption is shown using a symbol >.

Table 2: Table for degree 64

No. I+G GAP Magma
1201 24 268 264 >2614 706 151 155
1202 26 197 192 1393 683 >15792 723
1203 27 141 141 1155 >25628 15620 5263
1204 26 22105 21602 651 >19686 1177 2784
1205 37 2857 2799 9633 >16751 5 4537
1206 31 241 242 263 6564 995
1207 290 23723 23430 4013 828 >21584 4000
1208 299 1617 1605 >12406 2142 166
1209 31 77 76 1527 486 23
1210 300 3066 3036 8484 481 232
1211 31 138 137 71 390 549
1212 164 35263 34830 515 321 >26433 148
1213 37 59 59 11 5926 >10520 5338
1214 34 11197 11072 20 3367 >34105 1040
1215 111 7964 7894 >7915 545 21137 >9181
1216 47 >34412 >33171 >17824 >10767

I. Miyamoto: Isomorphisms of Association Schemes 7

5. An application

In this section we will give some more inspection about the algorithm given
in Miyamoto (2000). As is shown in Section 3 if G is a transitive permutation
group on X, then the normalizer of G is contained in the group of isomorphisms
of the association scheme defined by G. If G is not transitive on X, then the
constituent of G on each orbit defines an association scheme. Let O1,O2, · · · ,Or

be the orbits of G in X and (G,Oi) denotes the permutation group defined by
the action of G in Oi. Let A(i) be the association scheme defined by (G,Oi), let
I(i) be the group of isomorphisms of A(i) and let gij be an isomorphism from
A(i) to A(j) if they are isomorphic. Let I be the group generated by all I(i) and
gij. In Miyamoto (2000) the following lemma speeds up the computation of the
normalizers of permutation groups. In this note we give the lemma in a slightly
modified form as is used in our program to compute normalizers.

Lemma 5.1: Let K be a permutation group on Ω. Let L be a permutation group
containing K, let F be a tuple [p1, p2, · · · , pr] of points in Ω and let Gi be the
stabilizer of the subset [p1, p2, · · · , pi] of F as a tuple in G for i = 1, 2, · · · , r. Let
I i be the group of isomorphisms of the association schemes on Ω\[p1, p2, · · · , pi]
defined by Gi as stated above. Set I0 = I, G0 = G and set I{0..i} = I0∩I1∩· · ·∩I i.
Suppose that Gi ∩ L and I{0..i} ∩ L have a common orbit and that the point pi+1

is contained in the orbit for i = 0, 1, · · · , r − 1. Then the normalizer of G in L
is generated by G ∩ L and the normalizer of G in I{0..r} ∩ L and the normalizer
of G in K is obtained as the intersection of K and the above normalizer in L.

Suppose that we would like to compute the normalizer of G in K. The group
L in the lemma is usually chosen to be K itself or the symmetric group, which
does not mean computing the intersection I ∩ L in our program, in order to be
able to apply the lemma well. Our program computing normalizers follows the
lemma and the normalizer of G in I{0..r} ∩L for some r is computed by the GAP-
command Normalizer. Our program is written in GAP programming language.
Normalizers are computed by a backtrack algorithm searching the normalizing
elements. If the lemma works, then we can restrict the searching space. We use a
backtrack algorithm to compute the isomorphisms of association schemes. As in
the lemma we compute the intersections of groups and they are also computed
by a backtrack algorithm. However these backtrack algorithms are computed
rather quickly.

If G is transitive, then the lemma works at least once, that is, r = 1, if G ⊆ L.
There are the list of transitive groups of degree up to 22 in GAP library (Hulpke,
1996). We will show the general performance of our program computing the
normalizers of the transitive groups in the symmetric groups in the following
tables. We used 700 MHz Pentium III machine under Linux for computing the
tables. We compare our method with the direct computation by GAP or Magma
command Normalizer. The timings are in seconds. The columns ”as” show
the timings by our method. The columns ”GAP” show the timings by GAP4 and

I. Miyamoto: Isomorphisms of Association Schemes 8

those ”Magma” by Magma 2.5. In Table 3 and 5 the columns ”number” show the
numbers of the transitive groups of which normalizers in the symmetric group are
computed within the time range denoted in the columns ”time”, and the columns
”average” show the average computing times. In Table 3 minimum, maximum
and overall average times are also shown. Table 3 shows the computation for
degree 18, Table 5 for degree 20, 21 and 22, and Table 4 shows the total times
for computing all the normalizers of the transitive groups of degree from 5 to
19 except 18. When the degree of the transitive group is greater than 19, we
interrupted to compute in 20 minutes.

Table 3: Normalizers of transitive groups of degree 18 in S18

as GAP Magma
time number average number average number average
< 1 910 0.333 883 0.094 879 0.086

1≤ ∗ < 10 73 1.472 33 1.855 18 3.16
10≤ 0 - 67 5913 86 5300
min 0.14 0.01 0.009
max 2.4 30645 34199
all 0.42 392 430

As is seen in Table 3, most groups are computed very quickly by direct com-
putation using GAP or Magma command Normalizer. In such cases the direct
computation is from 5 to 10 times as fast as our method. But there also exist a
couple of groups for which the normalizers are hard to compute. In these cases
our method is usually more than 100 times as fast as the direct computation. If
the degrees are small, Table 4 shows that almost all groups are computed quickly
by the direct computation.

Table 4: Normalizers of transitive groups in the symmetric groups

degree number as GAP degree number as GAP
5 5 0.21 0.02 12 301 55.86 8.74
6 16 0.72 0.1 13 9 1.04 0.15
7 7 0.38 0.06 14 63 15.79 69.97
8 50 3.77 0.61 15 104 30.4 29.37
9 34 4.29 0.44 16 1954 595 1300

10 45 6.59 0.74 17 10 3.12 0.28
11 8 0.77 0.17 19 8 1.72 0.18

In the lemma if K = Sn, the symmetric group of degree n, then we have no
choice for the group L. We will consider a case K ∼= An, the alternating group.

I. Miyamoto: Isomorphisms of Association Schemes 9

Table 5: Normalizers of transitive groups of degree n =20, 21, 22 in Sn

as GAP
degree time number average number average

20 < 1200 1117 0.83 1091 5.15
1200 ≤ 0 - 26 ≥ 1200

21 < 1200 164 1.31 143 40
1200 ≤ 0 - 21 ≥ 1200

22 < 1200 59 1 46 32.3
1200 ≤ 0 - 13 ≥ 1200

Let G be TransitiveGroup(22,48), the 48th transitive group of degree 22 in
the GAP library. Then G ∼= M11 o C2, a wreath product of the Mathieu group
of degree 11 by a cyclic group of order 2. In this case the C2-part does not
contain an even permutation and so G ∩ K is not transitive. It is obtained in
Miyamoto (2000) that I ∼= S11 o C2. This group contains an even permutation
that interchanges the two blocks of length 11. Hence I∩K is transitive. Therefore
if we choose K = L, then there exists no common orbit of G∩K and I ∩K and
the lemma does not work at all. It was hard to compute the normalizer in I ∩K.
If we choose L = S22, the symmetric group, then the lemma works well and the
computation proceeds smoothly, which is shown in Table 1 in Miyamoto (2000).
The intersection of this normalizer and K can be computed quickly by the GAP

command Intersection and we obtain the desired normalizer.
Let H =TransitiveGroup(7,4), the fourth transitive group of of degree 7

which is doubly transitive of order 7× 6, and let C =Group((1,2,3)), a cyclic
group of order 3. Let G =WreathProduct(H, C), the wreath product of H by
C, which is isomorphic to TransitiveGroup(21,109). Let K be the wreath
product of S7 by C. Then I is isomorphic to the wreath product of S7 by S3

and G ⊆ K ⊆ I holds. The stabilizers of one point in G and K are isomorphic
to C6 ×H ×H and S6 × S7 × S7 respectively. Both of them have the orbits of
lengths 1, 6, 7 and 7. Then we can easily see that sequence of stabilizers in G
and K have common orbits of lengths 21, 7, 7, 6, 6 and 6, which means r = 6
in the lemma. Hence if we set L = K, the lemma works well. Oppositely if we
set L = S21, we can apply the lemma only twice and the lengths of the common
orbits of the stabilizers in K and I are of lengths 21 and 6, since the stabilizer
of a point in I is isomorphic to S6× (S7 oC2) and has orbits of lengths 1, 6, and
14. The computing times differ by about 8 times.

We can make similar examples for larger degrees in both cases and then the
computing times differ by much more. In our program we can choose the correct
groups in these cases heuristically.

I. Miyamoto: Isomorphisms of Association Schemes 10

References

Bannai, E., Ito, T., Algebraic Combinatorics I : Association Schemes , (1984).
Benjamin/Cummings, Menlo Park, CA,

The GAP Group, GAP – Groups, Algorithms and Programming, Version
4 , (1997). Lehrstuhl D f Mathematik, Rheinisch Westfälische Technisch
Hochschule, Aachen, Germany and School of Mathematical and Computa-
tional Sciences, U. St.Andrews Scotland,

Hanaki, A., Data of association schemes, published at WWW
http://math.shinshu-u.ac.jp/˜hanaki, (1999).

Hanaki, A., Miyamoto, I., Classification of association schemes with 16 and 17
vertices, Kyushu J. Math., (1998). 52, 383–395. Hanaki, A., Miyamoto, I.,
Classification of association schemes with 18 and 19 vertices, Korean J. Comp.
App. Math., (1998). 5, 543–551. Hanaki, A., Miyamoto, I., Classification
of primitive association schemes of order up to 22, Kyushu J. Math., (2000).
54, 81–86.

Hulpke, A., Konstruktion transitiver Permutationsgruppen Dissertation,
RWTH-Aachen, (1996).

Mckay, B., Practical graph isomorphism, Proceedings of the Tenth Mani-
toba Conference on Numerical Mathematics and Computing, Vol. 1(Winnipeg,
Man., 1980) 45–87. Congressus Numerantium 30 , (1981). 45–87.

Miyamoto, I., Computing normalizers of permutation groups efficiently using
isomorphisms of association schemes, Proceedings of the 2000 International
Symposium on Symbolic and Algebraic Computation, C. Traverso, (2000).
200–204. ACM Press,

Theißen, H., Eine Methode zur Normalisatorberechnung in Permutationsgrup-
pen mit Anwendungen in der Konstruktion primitiver Gruppen. Dissertation,
RWTH-Aachen, (1997).

