
Performance of the GAP-function

Normalizer and an attempt of its

improvement II

Izumi Miyamoto

University of Yamanashi

Let Ω = {1,2, · · · , n}.
Let G and H be permutation groups on Ω.

The normalizer of G in H is defined by

Norm(H, G) = { h ∈ H|h−1Gh = G }.

Suppose H = Sym(n) =SymmetricGroup(Ω).

GAP4 - Groups, Algorithms, Programming (version

4)- a System for Computational Discrete Algebra has

a special function ”DoNormalizerSA” for such cases.

1

If G is imprimitive and only one block system of block

length l, for instance, l = 2,

Sym(n)

Block system of G

then Norm(Sym(n), G) ⊆ W,

where W =WreathProduct(Sym(n/2), Sym(2)).

DoNormalizerSA invokes NormalizerParentSA to com-

pute W and then computes

Norm(W, G) instead of Norm(Sym(n), G).

2

Even if G is primitive, we have such a subgroup as

above.

Proposition.(’97)

If G is transitive, then the normalizer of G is contained

in the automorphism group of the association scheme

A formed by G.

So Norm(Sym(n), G) = Norm(Aut(A), G).

The wreath product W appears as the automorphism

group of a typical association scheme.

3

Example: the relation matrix of an association scheme

consisting of the orbits of G on Ω×Ω

Ω︷ ︸︸ ︷

A =




0 1 1 1 1 1 2 2 2 2 2 2
1 0 1 1 1 1 2 2 2 2 2 2
1 1 0 1 1 1 2 2 2 2 2 2
1 1 1 0 1 1 2 2 2 2 2 2
1 1 1 1 0 1 2 2 2 2 2 2
1 1 1 1 1 0 2 2 2 2 2 2
2 2 2 2 2 2 0 1 1 1 1 1
2 2 2 2 2 2 1 0 1 1 1 1
2 2 2 2 2 2 1 1 0 1 1 1
2 2 2 2 2 2 1 1 1 0 1 1
2 2 2 2 2 2 1 1 1 1 0 1
2 2 2 2 2 2 1 1 1 1 1 0








Ω

Aut(A) = WreathProduct(Sym(6), Sym(2))

4

Example: the relation matrices of association schemes

A =




0 1 1 2 2 2
1 0 1 2 2 2
1 1 0 2 2 2
2 2 2 0 1 1
2 2 2 1 0 1
2 2 2 1 1 0




, B =




0 1 2 3 3 3
2 0 1 3 3 3
1 2 0 3 3 3
3 3 3 0 1 2
3 3 3 2 0 1
3 3 3 1 2 0




WreathProduct(Sym(3), Sym(2)) forms A.

WreathProduct(Cyc(3), Sym(2)) forms B.

Both groups have only one same block system.

Block system cannot distinguish A and B.

5

We would like to show two algorithms

Algorithm A-I and Algorithm A-II,

which only work on transitive groups now.

We will not use association schemes but only Wreath-

Products in both Algorithms. Our programs are short

and consist of 100 lines or so.

We use a backtrack method to compute the auto-

morphism groups of association schemes. So it is not

an easy computation, but it is much easier than to

compute normalizers directly in some cases.

6

If G is transitive, we can also use the following lemma.

Lemma.(’00)

Let K be a permutation group on Ω. Let F be a

tuple [p1, p2, · · · , pr] of points in Ω and let Gi be the

stabilizer of the subset [p1, p2, · · · , pi] of F as a tuple

in G for i = 1,2, · · · , r. Let Ii be the group of iso-

morphisms of the system of association schemes of

Gi on Ω\[p1, p2, · · · , pi]. Set I0 = I, G0 = G and set

I{0..i} = I0 ∩ I1 ∩ · · · ∩ Ii. Suppose that Gi ∩K is tran-

sitive on the orbit of I{0..i} ∩ K containing the point

pi+1 for i = 0,1, · · · , r − 1. Then the normalizer of G

in K is generated by G∩K and the normalizer of G in

I{0..r} ∩K.

7

K in Lemma is used instead of Sym(n) in Norm(Sym(n), G).

K may be WreathProduct or Aut(A).

Lemma says

if K and G have a same orbit, containing p,

then Norm(K, G) = GNorm(Kp, G).

Note that

Norm(Kp, G) =Norm(Norm(Kp, Gp), G).

8

Suppose furthermore that

if Kp and Gp have a same orbit, containing p′,
then Norm(Kp, Gp) = GpNorm(Kp,p′, Gp).

Norm(Kp,p′, Gp) =Norm(Norm(Kp,p′, Gp.p′), Gp).

Norm(K, G) = GNorm(Norm(Kp,p′, Gp), G).

Or something else happens so that

OrbitLengths(Gp) = [l1, l2] (l1 6= l2).

Then Norm(Kp, Gp) =Norm(Kp ∩D, Gp),

where D =DirectProduct(Sym(l1), Sym(l2)).

(D is computed by NormalizerParentSA.)

So various heuristics arise from this computation.

From these arguments we have
9

Algorithm A-I which uses a lot of heuristics.

Suppose that

BG is the only one block system of G of l = |B|.

B
G |B=Action(G ,B)B B

G=Action(G,B)
_

G

Here GB is the setwise stabilizer of B in G.

SubgpConjSymmgp, another GAP special function, which

computes a conjugating element between two sub-

groups in a symmetric group considers these actions

Ḡ and GB|B.

10

For computing normalizers, let

H =Norm(Sym(l), GB|B) and K =Norm(Sym(n/l), Ḡ).

Then

Norm(Sym(n), G) ⊆ WreathProduct(H, K)

We apply this argument recursively. We use Lemma

on this WreathProduct(H, K) with some heuristics.

This gives Algorithm A-II

11

Experiment

Norm(Sym(n),TransitiveGroup(n, k))

of degree n, 20 ≤ n ≤ 30.

number of groups
20 ≤ n ≤ 30 36,620

WreathProduct 36,413
primitive 105
remaining 102

12

Computing times of the normalizers of transitive

groups of degree n, 20 ≤ n ≤ 30, in Sym(n)

time range DoNorm A-I A-II
∗ ≤0.2sec 22238 956 85

0.2sec < ∗ ≤0.5sec 5433 24213 1575
0.5sec < ∗ ≤1sec 2200 10377 15698
1sec < ∗ ≤3sec 1572 788 18994
3sec < ∗ ≤10sec 1162 170 237
10sec < ∗ ≤40sec 1005 39 31
40sec < ∗ ≤5min 1176 66 0
5min < ∗ ≤30min 705 9 0
30min < ∗ ≤1h 114 2 0
1h < ∗ ≤10h 260 0 0

10h < ∗? 755 0 0
total time ? 10.6h 11.4h

13

DoNormalizerSA and AutomorphismGroupPermGroup

which computes Norm(Sym(n), G) directly. We com-

puted 31091 Norm(Sym(n), G)’s within 2 hours each.

(in minutes)
time range number total time total time

by AutPerm by DoNorm by AutPerm
∗ ≥0sec 31091 18428 16599
∗ ≥1sec 3973 18334 16543
∗ ≥10sec 2180 18189 16439
∗ ≥1min 1341 17626 16047
∗ ≥10min 391 13548 12869
∗ ≥60min 62 4988 4817
∗ ≥90min 11 1165 1139

14

DoNormalizerSA and AutomorphismGroupPermGroup

applied to

some intransitive groups of degree n− 1

Norm(Sym(n− 1),Stabilizer(PrimitiveGroup(n, k), n))

(in seconds)

n k DoNorm AutPerm
81 123 37 0.2
100 3 77 0.3
105 9 12 0.3
112 1 19652 0.4
120 12 46 0.5

15

G =Stabilizer(PrimitiveGroup(81,123),81)

OrbitLengths(G) = [40,40]

W =WreathProduct(Sym(40), Sym(2))

It took 23 seconds for SmallGeneratingSet(W).

G =Stabilizer(PrimitiveGroup(112,1),112)

OrbitLengths(G) = [81,30]

W =DirectProduct(Sym(81),DoNorm(Sym(30), GO2))

GO2 ∼=TransitiveGroup(30, 1019)

It took 11854 seconds for DoNorm(Sym(30), GO2).

It took 0.2 seconds for DoNorm(Sym(81), GO1).

G is faithful on both orbits.

16

Example: Norm(H, G), H 6= Sym(n)

H =WreathProduct 6⊇ G =TransitiveGroup(n, k)

time range by DoNorm(Sym(n), G) 30min≤ ∗ ≤1hour
number of groups 117

total time for DoNorm(Sym(n), G) 4962min
total time for Norm(H, G) 1162min

Some computing times for DoNorm(Sym(n), G) and

Norm(H, G) (in seconds)
n k DoNorm(Sym(n), G) Norm(H, G)
30 2173 3565 6052
30 2256 2064 2580
30 2548 2714 3200
30 2560 2704 3311
30 4644 1978 4230

17

Remark : Computational complexity of Normalizer

L.M. Luks and T. Miyazaki

Polynomial-time normalizers for permutation groups

with restricted composition factors. (ISSAC2002)

Norm(H, G)

If H has restricted composition factors, then Norm is

P.

This algorithm seems far from actual computation

now.

References:

I. Miyamoto. Performance of the GAP-function Nor-

malizer and an attempt of its improvement ftp://tnt.math.metro-

u.ac.jp/pub/ac05/miyamoto/
18

