I - 555周辺地盤を考慮したシールドトンネルの等価副性

(株) 能谷組技術研究所 正員 鈴木 猛康 東京大学生産技術研究所 正旨 田村重四郎

1. まえがき

シールドトンネルは、数個のセグメントを円形に組立てたリングを、ボルト等のリング間継手で連結した ものであり、沈埋トンネルとは構造が異なっている。地震応答解析では、このような構造を等価な柱・梁に 置換え、地盤とトンネルとを結ぶバネを通して地盤の変位を伝達させる、いわゆる応答変位法が用いられて いる。筆者らは、シールドトンネルの地震観測結果に基づいたトンネルの等価剛性を算定し(1)、実地震 時のセグメント本体と継手のひずみの発生メカニズムについて、検討を行ってきた(2)。その結果、従来 の耐震設計指針で示されているような、セグメント~ボルトの直列バネ系のモデル化では、実現象を表すこ とができないことがわかった。ここでは、その理由を周辺地盤とトンネルとの相互作用と考え、周辺地盤も 含めてシールドトンネルをモデル化し、ひずみの発生メカニズムを数値解析によって明らかにするとともに 、周辺地盤を考慮した、実用的な等価剛性の算定法を提案する。

2. 地盤~トンネル系のモデル化と数値解析

『トンネルは周辺地盤の動きに追随して変形する。』という前提まで立返り、図1に示すように、周辺地 盤も含めたバネ系で、引張変形時のトンネルのモデル化を行った。すなわちこのモデルでは、5リング間で ー様な地盤ひずみが発生するように、地盤に u g1~ u g14 の変位を与えたとき、セグメントバネ K s、継手 バネKitで構成されたトンネルの変形が、どのように生じるかを解析することができる。以下に紹介するの は、地震観測を行っているシールドトンネル(表1)のKsとKitの値をモデルに導入したケースの数値解 析例である。このとき、地盤とトンネルを結ぶバネ K_aは、厳密な方法で決定するのが望ましいが、ここで は地盤の単位体積重量を2.0gf/cm³で一定とし、次の簡易式から求めた。

 $K_g = \pi DL \cdot G = \pi DL \cdot \frac{\gamma_t}{\sigma} V_s^2$...(1)

ここで、 π ;円周率 G;土のせん断弾性係数 V_s;地盤のせん断弾性波速度

L:トンネルの長さ g;重力加速度

D;トンネル外径 r; 土の単位体積重量

当然ながら、地盤が硬いほどトンネルの変形は地盤の変形に近づき、軟らかければ両者の相対変位は大きく なるはずである。また地盤の剛性がある程度高ければ、トンネルは強制的に地盤と同じ変形を強いられるた め、継手の伸びが拘束されることが予想される。そこで、地盤のせん断波速度 V 。をパラメータとして K a を変化させ、地盤に一様なひずみの発生するような変位を与えたときの、セグメント本体(90cm区間)と継 手の変位量を、図1のモデルの中央部で計算した。

3. 数値解析結果と考察

計算で得られた継手変位量とセグメント変位量の比を変位比rとする。図2はrと地盤のV。の関係をプ ロットしたものである。V。=0に対するrの値は、継手のバネ定数をセグメントのバネ定数で除した値(r=3.4)である。地盤が硬くなるに従い V_s=400m/secまで、rはこの値から急激に低下し、それからは勾 配が次第に緩やかになっている。図2から判断すれば、V。が350m/sec程度になると、継手の伸びは、セグ メント〜ボルトの直列バネ系で通常期待される伸び量の約半分しか、有効に働いていないことになる。

次に変位比rとセグメントの軸剛性(EA)_{sea}を用いて、シールドトンネルの等価軸剛性(EA)_{eq}を

次式によって定義する。

 $(EA)_{eq} = \frac{1}{1+r} (EA)_{seg} = R_a \cdot (EA)_{seg} \cdot \cdots \cdot (2)$

ただし、R_a;軸剛性低減係数 1/(1+r)

図3は上式の R_a と地盤の V_s の関係を、計算結果に従ってプロットしたものである。地震観測地点のトンネル周辺地盤の V_s は 260~750m/secであり、これまでの実測結果から求めた R_a は0.28~0.45の範囲に分布しているので、本解析によって実挙動が説明できる。

シールドトンネルの曲げ変形に関しても、図1と同様なモデル化が可能である。その際は、セグメントを 梁に、継手を回転バネとせん断バネに置換え、地盤に曲率が一定になるような回転変位を与えれば良い。曲 げ変形については地震観測より、変形が小さいと継手がほとんど寄与せず、セグメントと継手が一体となっ て挙動し、ある程度大きな振動となると、継手の変位吸収が生ずることがわかっている。曲げ変形について も数値解析を実施したところ、振動が大きな場合には、解析結果が妥当であることが示された(図4)。 4. まとめ

地震観測により、地震時にシールドトンネルの継手の変位吸収が、従来の手法で期待されるほど行われて いないことがわかった。その理由を周辺地盤とトンネルとの相互作用と考え、周辺地盤を含めたトンネルの モデル化を行い、数値解析を実施した。その結果、地盤の剛性と継手の変位吸収の関係が明らかとなり、実 地震時挙動を説明することができた。また剛性低減係数を導入することにより、周辺地盤を考慮したシール ドトンネルの等価剛性を提案した。

5. 参考文献

1) Suzuki, T., C. Tamura and H. Maeda; Earthquake Observation and Response analysis of Shield Tunnel, 7th Japan Earthq. Eng. Symp., 1986, pp.1903-1908.

2)田村、桑原、鈴木;シールド洞道のリング継手の地震時挙動、生産研究、第38巻,第11号、pp 19-22. 表1 トンネルの諸元

