I - 644

実地震動記録への Jennings 型包絡関数 フィッティングの妥当性の検討

(株)熊谷組 技術研究所 正員 吉谷 進治 (株)熊谷組 技術研究所 正員 鈴木 猛康

1.はじめに

著者らは、宮城県柴田町において 高密度アレー地震観測システム(KASSEM)を構築し、実観測地 震波の特性について研究を行っている。¹⁾ 1984 年にシステム設置以来、最近では 1993.1.15 の釧 路冲地震や 1994.12.28 の三陸はるか沖地震など多くの地震が観測された。ここではその中で24 地震を対象にして観測波形に対する Jennings 型包絡関数のフィッティングを行い、時刻(T)を被 説明変数、マグニチュード(M)及び震源距離(X)を説明変数とした重回帰分析を実施した。本稿で はこれらの妥当性を検討したので報告する。

なお、観測点と震央位置を図1に、地震諸元を表1に示す。

2.フィッティング

S波立ち上がり時刻をTa=0.0秒とおけば、Jennings 型の包絡関数は、0~Td 秒の間のTb 及びTc 秒で不連続点を持ち、次式のように表される。

ここで、E(t)は加速度振幅値の絶対値、A はTb \leq t \leq TcでのE(t)の平均値とする。(1) 式へのフィッティングは、原記録の加速度時刻歴 の絶対値の点列から順次間引きを繰り返しながら、 以下の条件を満たすように行う。

①Td は、Tcの時刻から地震波の最終時刻へ向かって、加速度振幅の絶対値が初めて 0.1 Aを上回る時刻とする。

②加速度振幅値が最大となる時刻を Tmax とす ると、0~Td 秒の間でTb 及びTd の時刻との 関係は、0<Tb ≤Tmax ≤Tc <Td となるよ うに設定する。

③上記①及び②の条件を満たしながら、(1)式 に対する各点列の振幅値データとの残差平方和の 総和が最小となるように行う。

このフィッティング操作の結果により、2のn 乗のそれぞれの間引き点列データに対する A、 Tb、Tc及びTdが決定される。また、間引き の繰り返しは、包絡関数の形状が乱れない範囲で、 できる限りAの値が最大加速度値に近づくまで行 う。なお、本検討結果はいずれもn=5の場合で あり、5回間引きを行ったものである。さらに24 地震ののべ観測点数は96、加速度の水平成分はN S・EWの2方向で総成分数は192である。

図1 観測点と震央位置

3. 重回帰分析

2.のフィッティングで得られたパラメータTb、Tc及びTd で重回帰分析を行った。回帰式を次に示す。

$$\log T = a M + b \log X + c \qquad \dots (2)$$

なお、Mは気象庁マグニチュードであり、a、b及びcは回帰係数である。

	<u>表1</u> 地震諸元											
地震				震源地(度分)			深さ	規模				
	No 年月日			北緯		東経		km	M			
	1	84.	06.	26	37	31	141	35	50	4.5		
	2	84.	10.	23	37	09	141	31	47	4.5		
	3	84.	10.	25	37	17	141	40	53	5.2		
	4	84.	10.	27	37	48	141	58	47	5.8		
	5	84.	11.	20	37	06	141	37	44	4.9		
	6	84.	12.	19	37	08	141	34	44	5.3		
	7	85.	03.	11	36	27	141	01	47	5.0		
1	8	85.	04.	27	37	17	142	14	16	5.1		
	9	85.	05.	11	37	06	141	36	45	5.3		
	10	85.	07.	29	37	04	141	15	52	4.7		
	11	85.	08.	12	37	42	141	54	52	6.4		
	12	85.	09.	13	37	34	141	55	42	4.6		
	13	85.	09.	25	38	08	142	01	48	4.6		
	14	85.	10.	13	36	40	141	19	44	5.0		
	15	86.	02.	12	36	25	141	05	44	6.1		
	16	86.	02.	24	37	08	141	49	34	4.6		
	17	86.	03.	02	38	28	142	19	33	6.0		
	18	86.	11.	29	36	24	141	11	42	5.8		
	19	86.	12.	01	38	52	142	08	51	6.0		
	20	87.	01.	21	38	36	142	08	50	5.5		
	21	87.	02.	06	36	56	141	56	30	6.4		
	22	87.	02.	06	36	58	141	54	35	6.7		
	23	93.	01.	15	42	51	144	23	107	7.8		
	24	94.	12.	28	40	27	143	43	10	7.5		

4. 検討結果

図2にマグニチュード(M)に対する、立ち 上がり部+主要動部の意味としてのTcをプ ロットした。実線ーは大崎²⁾による包絡曲線 でのTc、点線…は次式のように断層長さから

Tc=10^{0.5M-1.88}/0.8Vs …(3) 導かれる。一点鎖線 一はフィッティング結 果の直線回帰を表す。ここでVsはこの地域 の平均的なせん断波速度3.7km/sにしている。 また、図3に震源距離(X)に対する、Tcを 示す。

図4に(2)式の重回帰分析から得られた回 帰係数a、b及びcを用いてM=5、6及び 7とX=100、150及び200 kmの時の Jennings 型の包絡関数を示す。

図3でXとTcの関係は、距離が大きくなっても、必ずしもTcは大きくならないという点でややばらつきがあるものの、図2のマグニチュードMとTcでは、大崎²³よりTcはやや短めだが、比較的明瞭な相関がある。

図4でも、Mと立ち上がり部Tb、XとTb の相関が認められる。

図4 包絡関数

5.まとめ

KASSEMで得られた水平動の地震波においては、マグニチュードMとTc、震源距離XとTc ともに正の相関が見られ、Jennings型の包絡関数に比較的よく当てはまった。重回帰の結果得られ たパラメータTb、Tc及びTdを以って加速度時刻歴の特性を端的に表現できると考えられる。

【参考文献】

1)阿部、粕田、柳沢(1992):土木学会第47回年次学術講演会概要集 P.782-783 2)大崎順彦:新・地震動のスペクトル解析入門 P.199-201:鹿島出版会