継手とひびわれの影響を考慮した トンネル縦断方向の地震時挙動と軸剛性の評価

田中 努¹·金井拓弥²·鈴木猛康³

 1エイト日本技術開発保全・耐震・防災事業部技師長 (〒164-8601 東京都中野区本町5-33-11)

 E-mail: tanaka-tsu@ej-hds.co.jp

 2熊谷組名古屋支店熊谷・徳倉・中島特定建設工事共同企業体 (〒517-0011 三重県鳥羽市鳥羽5-4-6)

 E-mail: takuya.kanai@ku.kumagaigumi.co.jp

 3は利力学店学工学的合理で対け合います。

3山梨大学医学工学総合研究部社会システム工学系教授 (〒400-8511山梨県甲府市武田4-3-11)

E-mail : takeyasu@yamanashi.ac.jp

鉄筋コンクリート構造の都市トンネルの縦断方向の配筋は横断方向の主鉄筋の配力筋として定め、縦断 方向の抵抗力を超える力やひずみが発生する場合は継手を設けて低減させる耐震設計が行われることが多 い.しかしながら、地震時ひずみの実測値や数値解析結果から逆算して求めた継手のばね定数は、その構 造から決まるばね定数より大きく、設計で期待するほどの変位吸収効果が得られない危険性が高い. 継手によりトンネル覆工のひずみや応力が低減できないのであれば、覆工にひびわれを許す設計や既設 トンネルの耐震性評価が必要となることから、本論文では、WCOMDを用いて鉄筋比に応じたひびわれ後 の覆工の引張剛性の変化を把握し、応答変位法の考え方を用いて、地震時に想定される地盤ひずみと覆工 ひずみの関係を図に表した.これを基に、既設トンネルの覆工状態の評価と新設トンネルの縦断方向の配 筋量によりひびわれ後の覆工のひずみを制御する考え方を提案している.

Key Words: Tunnel, Longitudinal direction, Seismic design, Lining cracks, Stiffness, Joint

1. はじめに

トンネル縦断方向の耐震性は、地下水位下に構築 される都市トンネルには重要な性能である.特に水 底に構築される沈埋トンネルでは、浸水は致命傷と なるため、函体間の継手剛性をコントロールして、 変位吸収により函体の縦断方向の引張力を軽減させ ると共に、変位を制限して止水性を確保する.その ため函体の横断面の主筋に対する配力筋や鋼殻の鋼 板をトンネル縦断方向の抵抗部材として耐震性を確 保している¹⁾²⁾.逆に、シールドトンネルでは、 Im程度の間隔でリング継手が存在するため、リン グ継手の剛性がセグメントに比べて小さい場合には、 セグメント幅分の地盤ひずみがリング継手に集中す ると考え、リング継手の止水性と金具の安全性を確 保している³⁾⁴⁾.

一方,開削トンネルは,基本的にはコンクリート を連続して打設する継手のない構造であり,古くは, トンネル縦断方向の耐震性を確保するために,縦断 方向鉄筋の量を増加させる耐震対策が行われた.地 盤急変部を通過する場合は、延長20m程度毎のコン クリートの施工目地を伸縮可能にし、止水性を確保 しつつ、トンネル縦断方向の断面力を低減させた上 で、不足分をトンネル縦断方向鉄筋で抵抗する対策 が取られた⁵⁾.しかし近年、さらに短い5mや10m の間隔で伸縮目地を設け、トンネル躯体の縦断方向 鉄筋量は、横断面の配力筋のままに押さえる方法も とられている.

いずれの耐震対策も、継手や伸縮目地によるひず みの吸収に期待して、トンネル縦断方向の鉄筋量を 抑える方法であり、特に近年の開削トンネルにおい ては、躯体コンクリートのひびわれ発生を押さえる ところまで、積極的に伸縮目地による変位吸収に期 待する設計が行われる傾向がある.

しかしながら,継手や伸縮目地に例えば1cmの開 きを生じるには,継手や伸縮目地の周囲の地盤に地 割れが生じるか地盤とトンネル躯体との間に滑りが 生じる必要がある.鈴木は,シールドトンネルのリ ング継手の変位吸収効果について調べ,継手周囲の 地盤拘束により継手剛性が構造で決まる剛性より高 まることを示している⁶⁾.したがって,継手や伸縮 目地の変位吸収が,現行の設計で期待するほど大き くない場合は,トンネル躯体に設計以上の力が作用 することになり,新設トンネルの配筋量の見直しや 既設トンネルの耐震性の再評価が必要になる.

本論文では,WCOMDを用いて鉄筋比に応じたひ びわれ後の覆工の引張剛性の変化を把握し,応答変 位法の考え方を用いて,地震時に想定される地盤ひ ずみと覆工ひずみの関係を図に表した.これを基に, 既設トンネルの覆工状態の評価と新設トンネルの縦 断方向の配筋量によりひびわれ後の覆工のひずみを 制御する考え方を提案する.

2. 継手の変位吸収効果

ここでは,継手の変位吸収効果が,現在の設計で 考えているほど大きくないことを,実測値の分析例 や解析結果から確認する.

(1) 実測値から分かる継手の効果

横浜市鶴見区にあるシールドトンネルにおいて実 地震時挙動観測が実施されている.図-1に示すよう にセグメント本体部およびリング継手を跨いだ継手 部でトンネル縦断方向の伸縮が観測されており、ひ ずみ計により自由長50cmの鋼棒の平均ひずみが計測 されている.2測定点の距離はわずか135cmであるた め、同一断面におけるセグメント本体と継手のひず みを観測していると言える.

図-1 シールドトンネルのひずみ計測状態

鈴木は、この観測値のセグメントと継手の伸縮量

の比から,継ぎ手ばね定数のセグメントのばね定数 に対する比を求めた.その結果,継手構造から設計 で評価する継手のばね定数はセグメントのばね定数 の2.5%であるのに対して,観測値から得られた継 手のばね定数は48%程度と大きいことを確認した.

これは、レベル1地震動より少し小さい地震であ りるが、実際に有効な「見かけの継手ばね定数」は、 設計値の約20倍大きく、継手による変位の吸収能力 は設計値の約1/20であることを示している.つまり、 セグメントは設計での想定と大きく異なる状況に曝 されることになる.

(2) 平面ひずみモデルの数値解析から分かる継手の 効果

継手が開くためには、継手近傍の地盤にせん断破 壊が生じるか、セグメントとの間で滑りが生じるも のと考えられる. 1つの継手に着目して、この現象 を数値解析により確認するとともに、継手の変位吸 収効果を解析的に確認する.

a)解析条件

解析はTDAPⅢを用いて、平面ひずみ解析を行った.

数値解析モデルは、図-2の平面ひずみ状態の2次 元モデル(幅13m×長さ5m)とした.図の右端にト ンネルの躯体を置き、境界条件はローラーとした. 継手に最大引張が生じる状態を考え、継手のある上 端で固定条件とした.トンネルから離れた左端の地 盤ではトンネルの影響が無いものとしてローラー、 下端は自由とした.トンネルの部材厚を25cm、継手 の長さを5cmとした.対象条件のため実際には10cm の継手長さを想定したことになる.

なお地盤とトンネル覆工との間に滑りと剥離を表 すジョイント要素を設置した.

材料定数は次のように設定した.

トンネル躯体のコンクリートは、設計基準強度 f_{ck} =24N/mm2,弾性係数E=25kN/mm2の弾性体とし、

継手部の剛性は、構造で決まるばね定数 $K_j = EA$ / L_j が隣接するトンネル躯体要素の5%、10%になる ように弾性係数 E_j を低下させる、地盤は、Vs = 50~800m/sの粘性土を想定し、単位体積重量 $\gamma = 15kN/m^2$ 、せん断弾性係数 $G_g = \gamma / g \times Vs^2$ 、ポア ソン比 $\nu = 0.45$ 、粘着力 $c = 6.25 \times NkN/m^2$ とした.

b)解析結果

解モデルの各要素に、トンネル縦断方向(図-2で 下向き)に一様の震度を与えて、変形を発生させた.

図-3は、与える震度を徐々に高めて地盤ひずみを 増加させたときの、継手に接する地盤要素に生じる せん断応力度の変化である.同図より、地盤要素が せん断破壊をするより早く、ジョイント要素による トンネルと地盤の間の滑りが発生することが分かる.

図-4より継手に隣接する地盤要素に1.5%程度の せん断ひずみが発生しても,滑りが発生する範囲は 継手から高々30cmまでに限られていることが分かる. 図-5に継手近傍の変形を示す.

これらより,継手が開くとき,周囲の地盤にせん 断破壊は生じずに,継手の近傍だけが滑るものと考 えられる.

次に、このときの継手の「見かけの継手ばね定数 K_{jeq} 」と継手周囲の地盤の拘束ばね K_g を、次式により算定する.

 $r = d_j / d_t = K_t / K_{jeq}, \quad K_t / K_j = 20,$

$$K_{jeq} = K_j + K_g \tag{1}$$

$$K_{jeq} = K_t / r = 20K_j / r \tag{2}$$

$$K_g = 20K_j / r - K_j = (20 / r - 1)K_j$$
(3)

ここで, $r: 伸び変形比orばね定数比, <math>d_j: 継手$ の開き, $d_i: トンネルの伸び, K_i: トンネルのば$ $ね定数, <math>K_{jeq}: 継手部の見かけのばね定数, K_j: 継$ $手構造から決まるばね定数, <math>K_g: 継手周囲の地盤$ の拘束ばね定数である.

解析により得られた r, K_{jeq} , K_{g}/K_{j} を表-1に, 変 化の一例を図-6に示す. 表-1の rの値は, 地盤のせ ん断ひずみが1.5%程度のときの値である. なお継 手構造から決まるばね定数は K_{j} =6.31×10⁴ kN/m (5%)である.

地盤のVs K_g/K_i r K_{jeq}/K_j (m/s)12.8 1.56 0.56 50 100 12.6 1.59 0.59 150 12.0 0.67 1.67 200 11.4 1.75 0.75

表-1 見かけの継手ばね

これらより、地盤のひずみが大きい状態でも、継 手の見かけのばね定数は、構造から決まるばね定数 の1.6倍程度であることが分かる.地盤のひずみが 小さい場合は図-6より、見かけのばね定数がより大 きくなる. *Vs*=200m/sの場合は、*r*=1.3となり、 見かけのばね定数は約15倍になる.(1)で述べたシ ールドトンネルの観測値は、地盤振動が小さいため、 地盤のひずみが小さく地盤の剛性が高い場合に相当 していると考えられる.

(3) 立体モデルの数値解析から分かる継手の効果

前述の平面ひずみモデルによる数値解析に加え, 3次元モデルにより,継手の効果を確認する.

a) 解析条件

解析は同じくTDAPⅢを用いて、3次元解析を行った.

解析モデルは図-7の横断面の3次元モデル(幅 150m(x)×地盤厚25m(z)×長さ25m(y))とした.下 面を固定,トンネルに平行な両側面はトンネル軸直 角方向のみ固定とした.トンネルは外径5.05mのシ ールドトンネルとし,土被り厚を11m,セグメント は幅1m,厚さ25cmとした.継手部の詳細を図-8に 示す.継手長さを2cmの要素で現し,前述の解析で 分かった滑りの生じる継手から±30cmの範囲のメッ シュを細かくしてジョイント要素を組み込んだ.

材料定数は, (2)の平面モデルの解析と同じである.

図-8 トンネル縦断方向の継手部のメッシュ分割(y-z

b) 解析結果

図-9の1/2波長の地盤変位が生じてモデル中央で 最大引張力が生じるように,解析モデルの各要素に 逆向き一様の震度を与えた.

図-9 発生させる地盤変位分布 (y-z面)

図-10はトンネルの変位分布である. セグメント の変形に比べて継手の伸びが圧倒的に大きいため, 階段状の分布となる. トンネル上下端とスプリング ラインで変位が異なっているが,地盤が深さ方向に 一様であれば余弦関数状の変位分布となるため,ス プリングライン位置の変位は,上下の平均値より上 端の変位に近い値になっている.

図-11 ジョイント要素のせん断力分布 (スプリングライン位置)

図-11は、全長(25m)に渡って設置したジョイント 要素の滑り具合を見たものである. 同図より継手部 のみで大きなせん断力が発生し、引張力の大きい中 央付近では滑りが生じていることが分かる. (2)の 平面モデルの解析結果と同様の現象が起きている. 紙面の都合でスプリングラインでの状況しか示さな いが、上下端とも同様な分布を示し、上端では滑る が下端では滑らない.

図-12は、モデル中央の継手の開きとトンネルの 変形の比である.継手の剛性はトンネル躯体の5% にしているため、設計上は20倍の変形になるはずで あるが、どの場合も小さい.

前述の表-1と同様に、解析結果から得られる見か けの継手ばね定数 K_{ieg} と地盤の拘束ばね定数 K_g の比 を表-2に示す. 地盤が軟弱な場合は、継手のばね定 数は構造から決まるばね定数の5割増し程度である が、比較的硬質になると5倍にもなる.比較的硬質 な地盤の拘束ばね定数Kgの比は,表-1より大分大 きいが、平面ひずみ状態よりも3次元モデルの方が 地盤の影響を実際に近い状態で考慮できていると考 えれば、地震時には表-2に近い状態が生じる可能性 がある.

表−2	見かけの継手ばね	(上中下4箇	「所の平均)

地盤のVs (m/s)	r	$K_{\it jeq}/K_{\it j}$	K_g/K_j
50	14.1	1.42	0.42
100	9.0	2.22	1.22
200	3.6	5.56	4.56

3. 覆工のひびわれによる剛性変化の評価

前述のように、継手によるトンネル覆工のひずみ や引張力の低減効果が、設計で考慮しているほど期 待できないとすると,鉄筋コンクリートの覆工には ひびが入り、それを踏まえた設計が必要になる.

ここでは、ひびが入った後の覆工のひずみと剛性 の関係を調べ、これを踏まえた設計法の考え方を整 理する.

(1) 対象モデル

配筋量を具体的に考えるため、開削工法による4 車線の道路トンネルをモデルに取り上げ、断面を 図-13のように仮定した. 部材厚は頂版・側壁・中 壁とも1.0m、底版を1.2mとし、ハンチは無視した.

トンネル縦断方向の鉄筋は、横断面の主筋の配力 筋として主筋の1/5強の鉄筋量が決められるので、 断面形状・寸法や土かぶり,横断方向の耐震設計結 果で左右される.

ここでは、基礎的な挙動を確認するため、図-13 の底版の部分モデル(厚さ120cm×幅20cm)を用い, 鉄筋量をD16~D32-ctc200 (鉄筋比p=0.17%~ 0.66%)に変えた6ケースのモデルで検討した.な お、コンクリートの設計基準強度 fck は 30 N/mm² (弾性係数Eは 28 kN/mm²),鉄筋の降伏強度 f_v は 345 N/mm²とした.

(2) 覆工のひびわれによる剛性変化の評価方法

トンネルが縦断方向に大きな引張力やひずみを受 けて覆工にひびわれが生じると、ひびわれ部の鉄筋 とコンクリートの付着が切れて徐々に抜け出し、剛 性が低下していく. 田中は過去に, 棒部材の引張試 験に基づく付着特性の検討や付着モデルを用いて他 の繰り返し載荷実験の再現を試みた7)8).しかし, その後、通常の設計に用いられる鉄筋とコンクリー トとの付着モデルが必ずしも確立していないことか ら,ここでは、コンクリートのテンションスティフ ネスと鉄筋の平均応力~平均ひずみに基づく鉄筋コ ンクリートの剛性変化を評価するプログラム WCOMD⁹⁾¹⁰⁾を用いて,棒部材を静的に引っ張り, ひずみ増加に対して発生する反力を求めた.

(3) ひびわれによる剛性の変化

計算したトンネル覆工の軸引張ひずみと平均応力 度の関係を図-14に示す.

覆工のひずみが地盤のひずみ増加に応じて徐々に

増加していく場合を考えると、約0.008%の軸ひずみ でコンクリートにひびわれが発生し、ひびわれの進 展に伴い、急激に反力が落ちるが、徐々に鉄筋の反 力が増し、降伏耐力で一定となる様子が現れている。 鉄筋の降伏ひずみが小さいが、コンクリートのテン ションスティフネスと鉄筋の平均応力~平均ひずみ に基づく解析の特徴であろう.つまり、ひびわれ部 の鉄筋はコンクリートとの付着が徐々に切れながら 自由長を延ばして伸びて行くが、ひびわれから離れ た付着の効いている部分では伸びないので、鉄筋が 降伏する平均ひずみは小さくなる.鉄筋比pが0.17% と0.24%のケースでは、降伏点が明らかでない.

計算したトンネルの軸引張ひずみと割線剛性の関係を図-15に示す.割線剛性は、そのひずみにおける覆工剛性を等価線形で表すときの剛性である.割線剛性は、覆工にひびわれが生じると、鉄筋の反力が大きくなるまで急激に低下する.いずれも鉄筋比が少ないので、どのケースも初期剛性の1/10程度になり、概ね同様の割線剛性を示す.

図-15 トンネルのひずみと割線剛性の関係

4. トンネル縦断方向の剛性と地震応答の関係

ここでは、線状地中構造物の縦断方向の地震時挙動を表す基本的な方法である応答変位法¹¹⁾¹²⁾を用

いて,前述の覆工のひびわれ後の剛性変化を考慮し, トンネル周辺地盤のひずみに応じた覆工のひずみの 関係を示す.

(1) 応答変位法の利用

狭義の応答変位法による縦断方向の耐震設計では、 地震時の地盤変位の場所による違いを正弦波状の分 布と仮定し、トンネルを弾性床上の梁として応答を 求める.地盤変位の分布を正弦波状と仮定すること により容易に理論解を求めることができ、その地盤 変位の波長 Lとトンネル剛性 EAまたは EIと地盤 ばね Kとの比である剛比係数 λ に基づく、地盤ひず み ϵ のトンネルへの伝達率 α を知ることができる.

応答変位法の設計で仮定する正弦波状の地盤変位 分布は、着目点の1種類の地盤条件に対して定まる ため、地震時にトンネル全長に渡ってある1組みの 変位振幅と波長の正弦波状の地盤変位分布が生じる ことを前提にするものではない.

一方,動的解析による縦断方向の耐震設計では, トンネルに沿う地盤条件の変化を,FEMモデルや 多質点モデルで表し,トンネルに沿う時刻歴の地盤 変位分布を算定し,弾性支承上の梁にモデル化した トンネルに与えて,応答を求める.したがって,ト ンネルに沿って地盤条件が急変する場所では,地盤 ひずみが大きくなりトンネルの断面力も大きくなる が,あまり変化がない場所では,地盤ひずみが小さ くなり,トンネルに生じる断面力も小さくなる.

地盤条件急変部では、その急変部分で大きな相対 変位が生じるが、その部分の地盤の変位分布が正弦 波状であると仮定することは一次近似値としては十 分であろう.図-16のように、地盤条件急変部の区 間長を半波長 L/2、両端の変位差を両振幅2 δ とす る正弦波(または余弦波)に近いと仮定すれば、ト ンネル縦断方向の地盤ひずみは、 $\epsilon_g=2\pi \delta/L$ で得 られる.つまり、応答変位法により、動的解析で求 める地盤条件急変部のトンネルの応答を概算するこ とができる.

図-16 トンネルのひずみと剛性の関係

ここでは、この考え方で応答変位法を用い、トン ネル覆工のひびわれによる剛性変化を考慮した地盤 からトンネルに伝達するひずみの大きさを調べる. なお、地盤急変部の範囲を100mと仮定し、結果と して地盤変位の波長 *L*を200mとして計算する.

(2) 地盤ひずみと覆工状態の関係

上記(1)の考え方で応答変位法の関係式を利用すると、トンネル縦断方向の地盤ひずみ ϵ_g とトンネルひずみ ϵ_f の関係は、次のようになる.

トンネルのひずみ:
$$\mathcal{E}_t = \alpha \mathcal{E}_g$$
 (4)

ひずみの伝達率 :
$$\alpha = 1/\{1+(2\pi/\lambda L)^2\}$$
 (5)

剛比係数 : $\lambda = \sqrt{k/EA}$ (6) ここで,

地盤変位の波長: L = 200(m) (前述(1)より) 地盤のばね : k = 1.5G (水道指針¹²⁾より)

地盤の弾性係数: $G = \gamma / g \times Vs^2 \approx 50000 (kN/m^2)$

地盤の単位体積重量: $\gamma = 19(kN/m^3)$

重力加速度 : $g = 9.8(m/s^2)$

地盤のせん断波速度: Vs = 160(m/s)

トンネルの剛性 : $EA = 3.2 \times 10^9 (kN/m)$

(図-13のモデルを想定)

上記の式と条件および図-14を基に、トンネル縦 断方向の地盤ひずみ ε_{g} とトンネルひずみ ε_{t} の関係 を求めると、図-17が得られる.

図-17は、横軸に地盤ひずみ εg,縦軸にトンネル ひずみ εtを示す. つまり図中の線は、式(4)を表し、 ひずみの伝達率は1以下のため、「地盤ひずみ=ト ンネルひずみ」の線より右側に存在する. 図中の鉄 筋比大は0.66%、鉄筋比小は0.24%で、図-14に対応 している.

鉄筋比の大小で、同じ地盤ひずみに対してトンネ ルひずみが大きく変わるが、およそ図中のA~Cの 状態になる. Aは覆エコンクリートにひびが無く、 コンクリートが引張に抵抗する範囲で、地盤ひずみ が増加してもトンネルひずみがあまり増加しない様 子が現れている. Bはひびわれ部の鉄筋とコンクリ ートの付着が徐々に切れて自由になった鉄筋が延び つつ抵抗する範囲, Cは鉄筋が降伏し地盤ひずみの 増加と同じだけトンネルひずみが増加する範囲 (「地盤ひずみ=トンネルひずみ」の線と同じ傾き の範囲)である.

この図-17は、図-14のトンネルひずみを地盤ひず みと関係づけて示したため、地震時の地盤変形の増 加に伴うトンネルの覆工のひずみが分かる.トンネ ル覆工にひびわれが生じると、トンネル覆工の剛性 が低下し伝達率が大きくなり、「トンネルひずみ= 地盤ひずみ」の関係に近づくため、AとCの範囲の 間で図-17の左にシフトしている.地震時に、地盤 ひずみが徐々に増加していく状態を考えると、図-17のAの範囲の右端でトンネル覆工にひびわれが発 生すると、矢印のように急激にトンネル覆工のひず みが増加することが推測される.

図-17 地盤ひずみと覆工ひずみの関係

5. 結論

(1) 継手とひびわれの影響

継手による変位吸収や断面力低減効果について, 実測値・平面ひずみ解析・3次元解析を通じて,次 のことが分かった.

- ・地盤の拘束により,継手の見かけのばね定数は, 構造から決まるばね定数より大きく,設計で想定 している変位吸収効果が得られない危険性が高い.
- ・継手の極近傍(片側30cm程度)で地盤とトンネルの間で滑りが生じるため,継手近傍の地盤のせん 断破壊は生じない.
- ・地盤の拘束は、当然のことながら、地盤の剛性が 高いほど大きい.

また,ひびわれ発生後の覆工の引張剛性の変化に 基づいた応答変位法による考察から,地盤ひずみと 覆工ひずみの関係について、次のことが分かった.

- ・ひびわれ発生後の応力~ひずみ曲線は、当然なが ら、配筋量により異なる. 配筋量が少ないとひび われ後の抵抗が見られず、ひずみの増加が進む.
- ・ひびわれ発生後の応力~ひずみ曲線の割線剛性として得られる着目ひずみに対応する等価剛性は、ひびわれ発生後急激に低下し、その変化傾向は配筋量にあまり影響されない。
- ・応答変位法の考え方に基づくと、地盤ひずみとトンネルひずみの関係は、覆工の応力~ひずみ曲線(図-14)に対応した関係(図-17)になる。
- ・地盤ひずみが徐々に増加するとき、覆工にひびわれが生じると、覆工のひずみは急激に増加し、鉄筋が抵抗できるところで止まる。その後、鉄筋が降伏すると、覆工には、地盤の増加ひずみと等しいひずみが増加する。
- ・ひびわれ発生後の覆工ひずみの大きさ、つまりひ びわれの状態は、配筋量により大きく異なる.

(2) 耐震設計と耐震性能評価への反映

設計するトンネルの配筋または既設トンネルの配筋に基づいて図-17を作成すれば、想定される地震時地盤ひずみに対する覆工の状態が推測できる.

- トンネル覆工のひずみが大きくなる場合は、図-17に基づいて、配筋量を増やし、ひびわれ後の覆 工のひずみを小さく抑える。
- ・特に図-17の鉄筋比が小さいケースでは、ひびわれ発生によりトンネル覆工のひずみが急激に増加したとき、ひびわれ部の鉄筋が抜け出して降伏するため、ひびわれが分散して発生せず、最初に生じたひびわれだけの幅が広がる危険性がある。
- トンネル縦断方向に短い間隔で伸縮可能な目地を 設けてひびわれを軽減する方法もあるが、継手の 変位吸収効果はあまり大きくないことに注意が必 要である.なお将来にわたる継手部からの漏水の 可能性など、総合的な判断が必要である.
- ・地盤ひずみが比較的小さく、トンネル縦断方向の 配筋量がある程度あれば、トンネル覆工のひずみ は小さいので、動的解析による詳細な検討は必ず しも必要としない.この場合は、地盤条件や構造 条件急変部に対してのみ詳細解析を行うのがよい.

謝辞:本研究のひびわれ部の剛性評価に関して、山 梨大学医学工学総合研究部の斉藤成彦先生に、様々 なご助言をいただきました.記してお礼申し上げま す.

参考文献

- 1) 清宮理,高橋正忠,園田恵一郎:沈埋トンネルの設計 と施工,技報堂出版,2002
- 2)首都高速道路公団:東京港トンネル工事誌,土木学会, pp.463-558, 1977
- 3) 土木学会トンネル工学委員会技術小委員会シールドトンネルの耐震設計法検討部会:シールドトンネルの耐 震検討,トンネルライブラリー第19号,pp.145-181, 2007
- 4) 和佐勇次郎,吉田幸司,田中努:軟弱地盤中のシール ドトンネルの地盤および覆工剛性急変部の耐震設計法, 土木学会論文集,No.510/IV-26, pp.69-79, 1995
- 5) 中川誠志,式田直孝,田中努,大竹省吾:硬質地盤を 通過する剛性の高いトンネルの地震時応答性状と耐震 設計,土木学会論文集,No.516/VI-27,pp.41-51, 1995
- 6) 鈴木猛康:シールドトンネル軸方向の耐震性評価に関する考察,土木学会論文集,No.441/I-18,pp.137-146,1992
- 7)田中努,橘義則,大竹省吾:ひびわれ部の剛性を考慮したトンネル覆工の耐震設計法,トンネル工学研究発表会論文・報告集,第3巻,pp.219-224,1993
- 8) 塚田あゆみ,橘義則,田中努:ひびわれを考慮した地 中構造物の軸引張剛性の評価法に関する研究、トンネ ル工学研究発表会論文・報告集,第7巻,pp.355-360, 1997
- 9) 岡村甫,前川宏一:鉄筋コンクリートの非線形解析と 構成則,技報堂出版,1991
- 10) 株式会社フォーラムエイト: UC-win/WCOMD Ver.2電 子マニュアル, 2006
- 11) (社)日本道路協会:共同溝設計指針,丸善, pp.52-80, 1986
- 12) 日本水道協会:水道施設耐震工法指針・解説,2009年 版, pp.87-91

SEISMIC RESPONSE AND STIFFNESS OF TUNNELS IN THE LONGITUDINAL DRECTION IN CONSIDERATION OF THE EFFECT OF JOINTS AND CRACKS

Tsutomu TANAKA, Takuya KANAI, Takeyasu SUZUKI

In the seismic design of urban tunnels in the longitudinal direction, a concept, in which axial strain can be reduced by longituginal joints, is generally adopted. However, spring constants for axial joints, determined by back calculation using the numerical results obtained from computer simulations or earthquake observations, is much greater than that calculated simply from a structural model of uurban tunnels in the longitudinal direction. In this paper, therefore, the authors propose a new design concept, in which cracks come up in tunnel lining and the tensile stiffness of tunnel lining is reduced. Then, this paper proposes a method to control a stress-strain relationship of reinforced concrete lining based on a response displacement method, using the amount of reinforced steel as a parameter.