3次元非線形地盤震動解析を用いた 堆積層における地盤ひずみの集中効果の検証

宮本 崇1・入原 渉2・鈴木 猛康3・藤田 航平4・市村 強5

 ¹正会員 山梨大学 地域防災・マネジメント研究センター (〒400-8511 山梨県甲府市武田4-3-11) E-mail: tmiyamoto@yamanashi.ac.jp
 ²正会員 山梨大学大学院 医学工学総合教育部 (〒400-8511 山梨県甲府市武田4-3-11) E-mail: g14mh002@yamanashi.ac.jp
 ³正会員 山梨大学 地域防災・マネジメント研究センター (〒400-8511 山梨県甲府市武田4-3-11) E-mail:takeyasu@yamanashi.ac.jp
 ⁴正会員 理化学研究所 計算科学研究機構 (〒650-0047 兵庫県神戸市中央区港島南町7-1-26) E-mail:kohei.fujita@riken.jp
 ⁵正会員 東京大学地震研究所 (〒113-0032 東京都文京区弥生1-1-1)

E-mail:ichimura@eri.u-tokyo.ac.jp

複雑な表層地盤構造を呈する甲府盆地では、地震時には局所的な地震エネルギーや地盤ひずみの集中に より、ローカルサイト効果に起因する震災の帯の発生が懸念される.このような現象は、通常の被害想定 で用いられる1次元解析では評価できないため、高精細なメッシュで表層地盤を3次元的にモデル化した 解析が必要である.そこで本稿では、甲府盆地の3次元地震応答解析を試みる.甲府盆地の表層地盤と同 様の物性値を有する仮想的な地盤モデルに対する3次元地震応答解析から、不整形表層地盤における地盤 ひずみ集中のローカルサイト効果を検討した上で、甲府盆地の地盤モデルに対する3次元地震応答解析を 実施し、実地盤における表層での地震時の地盤ひずみ集中効果の定量的評価を行う.

Key Words : seismic ground strain, local site effect, 3D nonlinear ground response analysis

1. はじめに

甲府盆地は周囲を山で囲まれた非常に深い盆地である. かつては駿河湾とつながった入り江であったが、盆地の 北にそびえる火山の噴火堆積物や山体崩壊に伴う岩屑流 によって埋められ、甲府盆地はかつては湖の時代があっ た¹¹²⁾. さらに,豪雨による洪水,土石流が繰り返し発 生し、砂礫が厚く堆積していった. 多くの河川は北から 南へと、次第に西に流路を変えながら、最終的にはもっ とも標高の低い盆地南西部に集まり、富士川となって駿 河湾まで流れる. 釜無川はかつて甲府盆地の北西から盆 地の中央に向かって流れていたが、戦国時代から江戸時 代にかけた治水工事によって、盆地西を南北に流れる川 となった 3. 本川や支川の移動に伴って、表層地盤は複 雑な様相を呈している. 例えば, 江戸時代には舞鶴城建 設に伴い、河川の流路を変更している. そのため、1854 年東海地震時には、かつての後背湿地上に建造された武 家屋敷が大破するなど、局所的な被害が生じた4%.

甲府盆地の表層地盤構造は、河川の流路の変遷と氾濫 堆積物の分布により、変化に富んでいる.このような地 盤構造を有した場所では、3次元的なローカルサイト効 果によって地震動やひずみの局所的な集中が生じる.一 方、山梨県東海地震被害想定⁷では、1次元等価線形化 地震応答解析により250mメッシュ毎の震度を計算し、 震度に基づいた被害想定を行っているため、ローカルサ イト効果に伴って過去の地震で発生した被害の集中を説 明できていない.

著者らは、かつての釜無川の流路や河川氾濫に起因し て、複雑な3次元不整形表層地盤構造を有する甲府盆地 中心部の被害想定を、3次元非線形地盤震動解析によっ て行うことを目標としている.本稿では、地中構造物の 被害に大きな影響を与える地盤ひずみに着目し、(1)甲 府盆地の表層地盤と同様な物性値を有する、盆状の軟弱 堆積層を理想化した仮想的な地盤モデルの3次元地震応 答解析を実施し、表層地盤の不整形性と非線形挙動によ るひずみ集中のローカルサイト効果を検討する.つぎに、

表1	地盤モデルの物性値
LX I	

	V _p m/s	V _s m/s	$ ho \mathrm{kg}/\mathrm{m}^3$	h (線形時)	hmax (非線形時)	γr
1層:粘性土	560.89	110	1600	0.01	0.26	0.00145
2層:砂質土	1172.77	230	1900	0.01	0.01	∞

(2)甲府盆地の地盤モデルを対象として非線形3次元地震 応答解析を実施し、実地盤における地盤ひずみ集中を定 量的に評価する.

2. 既往の研究

これまで、地盤の不整形性に伴う諸現象の発生メカニ ズムや震動特性に関する研究は数多く行われてきている. いわゆる工学的基盤が盆状の形状をした盆状不整形表層 地盤においては、地震動の反射・干渉によって局所的な 地震動増幅、ひずみの集中が発生したり、ローカルな表 面波の発生によって振幅の比較的大きな長周期の地震動 が長時間継続するという継続時間延伸などが生じること が、理論的にも地震観測に基づく実証研究でも明らかに されている.

これらの基盤不整形性に起因する地震動の増幅、継続 時間の延伸により甚大な被害が発生した例として 1985 年のメキシコ・ミチョアカン地震が挙げられる.メキシ コ市は、火口湖を人工的に埋め立てた盆状の3次元不整 形表層地盤構造を成し、超軟弱な粘土層が厚く堆積して いる.このような盆状の基盤不整形表層地盤で、発生し た長周期地震動が数分間継続することにより、メキシコ シティでは震央から 350km 程度離れていたにもかかわ らず、多くの中高層建物が倒壊した⁹.

年縄らは甲府盆地を対象として、2 次元地下構造モデ ルの地震応答解析を行い、甲府盆地の不整形地盤構造特 有の震動特性を示した⁹.しかし、年縄が取り扱ったの は、 Vs が 1000m/s に達する地震基盤の不整形性に基づ いた表面波に関するローカルサイト効果、ならびに1次 元のサイト効果であり、表層地盤の不整形構造について は検討していない.

一方、地下埋設管路や都市トンネルにおいては、工学 的基盤の不整形に起因する表層地盤の局所的なひずみの 集中に着目した耐震設計が行われている.特に、管軸方 向の圧縮や引張が管路被害に影響することから、地盤応 答解析において軸ひずみに着目することは重要となる. 横浜市等の土丹層の溺れ谷に軟弱粘性土が堆積した地盤 中の地下構造物は、3次元不整形表層地盤のモデル化が 不可欠であることから,鈴木らは擬似3次元地盤モデル を開発し、実務設計に適用した¹⁰. このモデルはバネー マス系と平面応力状態の FEM を組み合わせた簡易モデ ルである.3次元解析ではなく簡易モデルとしたのは、 解析に用いるコンピュータの容量制限があったからであ る. 土岐らは3次元不整形地盤のひずみ分布特性や,2 次元と3次元解析の違いが周波数応答倍率や応答波形に 与える影響を考察している 1). しかし、これも比較的深 い基盤の不整形の問題を取り扱っており、浅い軟弱な表 層地盤の3次元問題を取り扱っていない.

こうした背景に対し,近年の計算機性能の発達や並列 計算技術などの計算科学の発展に伴い,大規模な非線形 地盤震動解析を可能とするコードの開発が行われている ¹⁰.市村らは,Vsが100m/s 程度の軟弱層を含む表層地盤 に対して高精細なメッシュを広い領域で構築し,FEMに よる解析を実施している¹³.本研究においても,こうし た解析コードを利用し,軟弱層を含む地盤の高精細なモ デルに対する解析を実施する.

(b) 層境界付近の拡大図

図-2 モデルのメッシュ分割図(b)は鉛直方向を10倍に拡大して表示): 不整形に堆積する軟弱層は,整形部に比較して高精細 に分割されている

3. 仮想的な地盤モデルに対する解析

(1) 解析モデル

甲府盆地に見られる,軟弱な堆積層の3次元的な不整 形性に起因する地盤ひずみの集中効果を検討するため, 甲府盆地の表層地盤と同様な物性値を有する盆状の軟弱 堆積層を理想化した,仮想的な地盤モデルを構築した. 構築した解析モデルの形状を図-1に示す.モデル寸法は 四方1km,深さ50mであり,中央に最大層厚5mの粘性土 が盆状に堆積している2層モデルである.各層の物性値 を表-1に整理する.同表には,後述する非線形解析にお ける構成則のパラメタを併せて載せている.

既往の解析事例において、同程度の物性値を有する地 盤モデルにおいて保証周波数を2.5Hzとした解析により 軸ひずみが収束することが確認されている¹³. このこと を参考に、本稿のこのモデルに対し、周波数2.5Hzまで の波長を10節点以上で表現できることが保証されるよう に要素サイズを設定してメッシュ分割を行い、モデル側 面と底面での波動の反射を除去するためにこれらの面に 半無限境界条件を適用した. 図-2に、モデルのメッシュ 分割図を示す.

この地盤モデルに対して,底面から図-3に示す中心周 期0.5sのリッカー波をx軸方向に入力し,モデル中心を通 る断面における地表面について水平変位を算出し,軸ひ ずみを求めた.ここでリッカー波の中心周期は,本研究 が地震被害想定を目標としていることから,多くの構造 物の固有周期帯に一致し工学的に重要と考えられる周期 として設定した.

また、3次元的な不整形性に起因する震動特性を地震 被害想定で広く用いられる1次元解析の結果と比較する ため、変位の各算出地点における1次元の地盤モデルを 作成してFEMによる地盤震動解析を行い、隣り合う2点 間の変位から軸ひずみを算出して3次元解析の比較を行 うこととした.実際の解析には、並列化に対応した大規 模非線形地盤応答解析コードであるGAMERA^{II}を用いた.

(2) 線形モデルに対する解析

図-4 線形解析における、1次元解析と3次元解析の水平方向絶対変位の最大値の比較

図-5 線形解析における、1次元解析と3次元解析の最大軸ひずみの比較

図-6 地盤モデルの最大主ひずみ分布:線形解析

3次元的な不整形性に起因する震動特性の把握のため、 地盤材料の構成則を線形とした場合の、モデル地盤の解 析結果と1次元地盤モデルの解析結果との比較を行った. 横軸に地盤モデルのx座標,縦軸に水平方向の絶対変位 の最大値をとったグラフを図-4に、縦軸に軸ひずみの最 大値をとったグラフを図-5に、地表面における最大主ひ ずみ分布を図-6に示す.1次元解析と比較したときの3次 元解析の水平変位振幅の増幅は顕著なものではない.一 方で、盆状の粘性土層端部より30~40m程度内側の地点 で比較的大きな軸ひずみが局所的に集中しており、軸ひ ずみが最大値をとっている地点では同地点の1次元解析 の結果の約2倍を越えていることが分かる.また、図-6 に示す最大主ひずみ分布からは、堆積層の境界部付近で ひずみの集中が帯状に生じていることが分かる.これら のことから、表層厚の違いによる波動の到達時間の遅れ や地盤境界面での波動の屈折で地表面の2点間に大きな 変位差が発生したことがひずみの集中に影響を与える、 盆地端部効果¹⁴が軸ひずみ分布に生じているものと考え られる.

(3) 非線形性の影響の検証

次に、地盤の非線形挙動による影響を把握するために、 非線形化モデルの解析を行った. せん断剛性の構成則と して、3方向のせん断変形に対して独立に修正ROモデル とMasing則¹⁵を適用し、減衰は3方向で独立に計算した値 の平均値を用いた.構成則のパラメタは、山梨県におけ る地震被害想定調査⁷⁰において用いられた等価線形解析 の動的変形曲線を元に、**表-1**に示す値を設定した. また、 非線形化により地盤中の波速が遅くなることを考慮し、

図-7 非線形解析における、1次元解析と3次元解析の水平方向最大変位の最大値の比較

図-8 非線形解析における、1次元解析と3次元解析の最大軸ひずみの比較

図-9 地盤モデルの最大主ひずみ分布:非線形解析

節点数を増やして線形時に周波数2.5Hzの波の波長を20 節点以上で表現できるようにメッシュを構築した.線形 解析時と同様に、モデル中心を通る断面上の地表面にお ける最大水平変位と最大軸ひずみを評価し、各評価地点 における1次元地盤モデルの非線形FEM解析の結果と比 較を行った.

横軸に地盤モデルのx座標,縦軸に水平変位の最大値 をとったグラフを図-7に,縦軸に軸ひずみの最大値をと ったグラフを図-8に示す.これらの図からは、線形解析 時と同様に水平変位については顕著な増幅が確認できな いが、軸ひずみについては線形時を越える値が生じてい ることが確認できる.図-9に示す最大主ひずみ分布から は、帯状に軸ひずみの集中が堆積層の厚い中央部寄りに 生じていることが分かる.また、特に1次元解析と3次元 解析で軸ひずみの差が大きい、図-8中の点Poにおける、 軸ひずみの時刻歴応答をに図-10に示す.なお、1次元解 析の軸ひずみは、各地点で独立に計算された1次元地盤 モデルの変位応答の差から算出しているものではないこ とを付記する.

このように、地盤の非線形化を考慮した場合、地盤ひ ずみは線形時を越える値を示すことに加え、その集中箇 所が変化することが分かった.

4. 甲府盆地モデルへの適用

(1) 解析モデル

図-101次元解析と3次元解析の軸ひずみの時刻歴応答(図-8中のPoにおける比較)

(a) 甲府盆地と解析領域の位置関係

(b) 解析領域

図-11 解析対象領域の航空写真: Google Earth による航空写真(©2015 Google, ZENRIN) に加筆. (b)における青線は, 領域中を 流下する河川の位置を示している

表−2 甲桁盆地モアルの物性値	F盆地モデルの物性値
------------------	------------

	V _p m/s	V _s m/s	$ ho \mathrm{kg}/\mathrm{m}^3$	h (線形時)	hmax(非線形時)	γr
1層:粘性土	560.89	110	1600	0.01	0.26	0.00145
2層:砂質土	1172.77	230	1900	0.01	0.20	0.0025
3層:礫質土	2141.58	420	2000	0.01	0.01	∞

次に、実地盤におけるひずみ集中の効果を検証するために、山梨県甲府盆地の地盤モデルに対する地盤震動解 析を実施した.

解析の対象として、河川の氾濫原であり軟弱な粘性土 層が局所的に堆積しており、甲府市の中心的な市街地で もある 5,750m × 5,750m の領域を図-11のように抽出した. 次に、抽出した領域に対して、本研究では工学的基盤以 浅の地盤を表-2に整理する物性を有する①粘性土層、② 砂質土層、③礫質洪積層の3層構造にモデル化し、山梨 県東海地震被害想定調査⁷において作成された表層地盤 モデルを基に、図-12に示す連続的な地盤モデルを構築 した.なお、地盤モデルの構築にあたっては、側方境界 上の各ノードに同一の境界条件を適用するために、四方 に1km ずつの遷移領域を配置し同一の地盤条件へ遷移さ せている.図-11と図-12(b)の比較からは、解析領域の西部を流下する荒川の東岸から、領域東部の濁川に沿った地域にかけて粘性土が堆積していることが分かる.このことは、これらの地域が両河川の氾濫原であることを示唆している.また、荒川西岸で粘性土の堆積が見られないことは、荒川の氾濫により標高の低い東岸側が主に浸水すると考えられていることと整合的である¹⁰.

上記の解析モデルに対し、図-13に示す、工学的基盤 面における想定東海地震波形^{ID}を解析領域底部からの入 力波として、GAMERAによる地盤震動解析を実施した. なお、解析では時間間隔0.0025sで24,000ステップの計算 を行い、1コア当たり2.5GHzのクロック周波数、総コア 数432の並列計算環境で87,780s (約24.4時間)を要した.

 (c) 砂層厚
 図-12 構築した3次元地盤構造モデル:最下層である礫質洪 積層の下端を標高0mとした

(2) 解析結果

まず、地点毎の時刻歴応答特性を確認するために、粘 性土の堆積がなく砂質土層が地表に現れている地点と、 粘性土が最も厚く堆積する地点を、それぞれ図-12(b)中 のP₁とP₂として抽出し、これら2地点における変位応答 を図-14のように比較した.同図(a)、(b)からは、入力波 の振幅が卓越する10s前後で両地点とも大きな変位が生

じていることが確認できる.一方,同図(c)からは,両 地点の変位差はわずかなものであり,粘土層の堆積に起 因する変位応答の増幅は大きなものでないことが言える. このことは,前章で行った仮想的な地盤モデルの非線形 解析において,軟弱層の堆積による顕著な変位増幅が見 られなかったことと整合的である.

一方で、図-15に示す解析モデル地表面における最大 主ひずみの分布からは、仮想的な地盤モデルに対する解 析結果と同様に、特に大きなひずみの集中領域が帯状に 表れていることが確認できる.また、図-12(b)との比較 から、このひずみの集中帯は粘土層の堆積部に位置する ことがわかる.このことを確認するために、図-15中A-A'断面における、x軸方向の最大軸ひずみ分布と地盤モ デル形状の関係を図-16に示す.同図からは、最表層と して粘土層が厚く堆積している地点において軸ひずみが 特に大きく、前節の非線形解析の結果と同様に、ひずみ の集中は粘土層の不整形性や非線形挙動に起因している ものと判断できる.また、主ひずみの最大値は10³を越 えており、伸縮性の乏しい線状地下構造物の被害が、粘 土層の堆積部で集中して発生する可能性が高いことがわ かった.

これらの結果より,3次元不整形表層地盤の非線形解 析は、大地震時の線状地下構造物の地震被害予測に不可 欠であり,地表付近の局所的な沖積層の堆積を表現する 高精細な地盤モデルの構築や,モデルに基づく数値地盤 震動解析が重要であることを示唆している.

5. おわりに

本研究では、地盤表層に不整形に堆積する軟弱層によ る地震時の地盤ひずみの集中効果を検証することを目的 として、仮想的な2層地盤モデルと甲府盆地の実地盤モ

図-14 粘土層厚の異なる2地点での時刻歴変位応答の比較

デルの2種類の地盤モデルに対する3次元地盤震動解析を 実施した.解析から得られた知見は以下の通りである.

- (1) 2層モデルに対する線形解析から、不整形な軟弱堆 積層によっては地表変位は顕著な増幅を示さないものの、ひずみについては堆積層端部付近に帯状の集 中領域を生じさせる盆地端部効果が確認できた.
- (2) 2層モデルに対する非線形解析からは、同様に帯状のひずみ集中領域が生じたが、その値は線形解析時を大きく越えており、また集中箇所は堆積層端部から堆積層中央部寄りに変化することが分かった。
- (3) 甲府盆地の実地盤モデルに対する非線形解析からは、 2層モデルと同様に変位の増幅は顕著でない一方で、 帯状のひずみ集中領域が軟弱堆積層の厚く堆積する 場所に生じることが確認された。
- (4) 主ひずみの最大値は10³を越えており、伸縮性の乏しい線状地下構造物の被害が、粘土層の堆積部で集

図-15 甲府盆地モデルにおける最大主ひずみ分布

図-16 A-A'断面における地盤形状と最大軸ひずみ分布の比較

中して発生する可能性が高いことがわかった.

今後は、本稿における地盤ひずみの解析結果や、より高 精細なモデルに対する解析から得られる地表地震動の加 速度の評価結果から構造物の被害結果の予測を行うなど、 本解析を地震被害想定の高度化に結び付けたいと考えて いる.特に甲府盆地における被害想定を行う上では、本 稿で着目した表層の不整形性に加え、基盤不整形に伴う 地震動の集中も考慮するための広帯域な地盤モデルの解 析も必要である.

数値解析結果の検証の観点からは、過去の強震動記録 の再現解析などを通して、本稿で構築した甲府盆地の地 盤モデルや数値解析結果の検証を今後行っていく必要が ある.また、本解析で確認された非線形化を考慮した地 盤モデルにおけるひずみ集中のメカニズムを、2次元モ デル等のより実務的なモデルと比較しながら分析するこ とにより、本稿の解析結果の妥当性確認やひずみ集中の 3次元性の評価を行うことも重要と考えられる.

参考文献

 竹林征三,望月正:河川における土木遺産の評価と 伝承法に関する研究,土木史研究,第15号,pp.239-246,1995.

- 田中収:甲府盆地地下水湖の構造,日本地質学会学 術大会講演要旨 93, p.498, 1986.
- 3) 川崎剛:武田氏研究第 13 号 釜無川の流路変遷につ いて, pp.41-46, 1994.
- 甲西町:甲西町誌 第二編 第二章 第四節 地震と噴火, pp.82-89, 1973.
- 5) 八田村:八田村誌 第二編 第二章 第六節 八田村の地盤災害, pp.116-117, 2003.
- 山梨県:山梨県東海地震被害想定調査業務報告書, 2005.
- 鈴木猛康:メキシコ地震震害調査報告,熊谷技報,39号, pp.99-109,1986.
- 9) 土木学会地震工学委員会ローカルサイトエフェクト小委員会:甲府盆地の地下構造モデルを用いた地震動解析, 地震動のローカルサイトエフェクト:実例・理論そして応用,土木学会,2005.
- 10) Tamura, C. and Suzuki, T.: A Quasi-three-dimensional Ground Model for Earthquake Response Analysis of Underground Structures- Construction of Ground Model -, 生産研究, 第 39 巻第 1 号, pp.37-40, 1987.
- 土岐憲三,佐藤忠信,清野純史,福井基史:3次元不 整形地盤の震動特性について,京都大学防災研究所 年報 第35号 B-2,1992.
- 12) Tsuyoshi Ichimura, Kohei Fujita, Seizo Tanaka, Muneo

Hori, Maddegedara Lalith, Yoshihisa Shizawa, Hiroshi Kobayashi: Physics-based urban earthquake simulation enhanced by 10.7 BlnDOF \times 30 K time-step unstructured FE non-linear seismic wave simulation, *Proceedings of SC '14 Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*, pp.15-26, 2014.

- 13) Tsuyoshi Ichimura, Kohei Fujita, Muneo Hori, Takashi Sakanoue, Ryo Hamanaka: Three-Dimensional Nonlinear Seismic Ground Response Analysis of Local Site Effects for Estimating Seismic Behavior of Buried Pipelines, J. Pressure Vessel Technol, 136(4), Paper No:PVT-13-1131, 2014.
- 14) 永野正行,山田有孝:3次元盆地端部構造の境界近傍における地震動増幅特性,日本建築学会構造系論文集,第560号, pp.51-58, 2002.
- 15) 地盤工学会:地盤の動的解析-基礎理論から応用まで-, 地盤工学会, pp.55-60, 2007.
- 16) 甲府市:甲府市防災情報 WEB http://kofu.gisweb.jp/hazardmap/ (2015 年 12 月 31 日閲覧).
- 中央防災会議:東海地震に関する専門調査会 http://www.bousai.go.jp/jishin/tokai/senmon/ (2015年12月31日閲覧).

(2015.11.6受付, 2015.12.31修正, 2016.2.20受理)

ANALYSIS OF STRAIN CONCENTRATION IN ALLUVIUM USING THREE DIMENSIONAL NONLINEAR SESMIC GROUND RESPONSE ANALYSIS

Takashi MIYAMOTO, Wataru IRIHARA, Takeyasu SUZUKI, Kohei FUJITA and Tsuyoshi ICHIMURA

In order for a municipality to formulate disaster management plan on earthquake, damage estimation has to be carried out as the first stage. In the case that a city is formed on soft soil deposits like Kofu city, it is important to evaluate earthquake ground motion and ground strain in consideration of local site effect. Though it is known that local site effect of earthquake motions in alluvial soil deposits irregularly bounded by bedrock brings about local concentration of damage, the damage estimation by three-dimensional numerical analysis have not be conducted due to the restriction of computational resource. However, together with the development of computational science technology, large-scale analysis on three-dimensional nonlinear seismic ground response has become executable at the present time. Thus, local site effects, especially for local concentration of strain in surface soft soil deposits are examined in this paper. Seismic responses of an ideal alluvial soil model and the surface soil model for a part of Kofu basin are evaluated using three-dimensional nonlinear FEM analyses. The results of analyses imply the significance of three-dimensional nonlinear analyses of surface soil deposits in earthquake damage estimation.