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SUMMARY

For earthquake response analysis of a soft surface layer which is not con-
sidered to be uniform in a three-dimensional expanse, a quasi-three dimensional
ground model is proposed for practical use. Vibration model tests are carried
out to examine the verification of the model. The new model is a kind of com-
posite system of a lumped mass-spring system and two-dimensional FEM.

INTRODUCTION

Studies of interactions between underground structures and surrounding ground
have included those by Dr. Okamoto on mountain tunnels (1948, 1963), Dr. Housner
on BART tunnels, Dr. Sakurai on ground surface observations of pipelines (1967),
Dr. Tajimi on dynamic analyses of foundations (1969), and Tamura proposing an ana-
lysis model for tunmnels (1975). Subsequently, there have been many studies car-
ried out, and differing from structures in the open air, it has come to be consi-
dered that, as a measure of the seismic force acting on an underground structure,
the displacement during earthquake of the surrounding ground has been considered
appropriate for evaluation of the earthquake resistance. This has been backed
up by earthquake observations made on actual structures.

It has been recognized that in case there is a large difference in wave impe-
dances between the surface layer ground and its basement, the influence of the
profile of the surface layer on earthquake motion is substantial, and in aseis-
mic analysis it is important for the behavior of the surface layer during earth-
quake to be investigated. The mathematical model previously proposed by Tamura
determines earthquake response of the surface layer ground grasping the varia-
tion in the surface layer two-dimensionally (length in horizontal direction and
depth). However, it is imaginable that the behavior of the surface layer ground
will be extremelly complex in case the ground condition changed sharply in a
three-dimensional expanse. In this case, FEM is normally used for the three-di-
mensional study of the dynamic behavior of the surface layer ground in a broad
area and in such case the relationship to be solved contains a very large number
of unknowns so that the numerical calculations are actually close to impossible,
and are not practical.

Therefore, the mathematical model previously proposed was extended and a
quasi-three-dimensional mathematical model that could be applied to three dimen-
sions was made up. It consists of the following main points:

A. The surface layer ground is divided into vertical soil-column elements.
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B. The soil-column elements are replaced by one-lumped-mass-spring systems
that show shear vibrationms.

C: The soil-column elements are transformed into plate elements, and spring
constants for relative displacements between mass points are computed from these
plate elements.

Employment of FEM will be convenient in computation of spring constants bet-
ween mass points. The new model can be said to be a hybrid system of a lumped
mass-spring system and two-dimensional FEM. Shear vibrations of the ground can
be expressed with this model along with which wave motions propagated through the
ground in planar form can be expressed. Comparisons between the model and experi-
mental results are also described below.

MATHEMATICAL MODEL

A soil column having a unit cross-sectional area as shown in Fig. 1 is con-
sidered. The equivalent Young's modulus (EF) when this soil columns deform in the
shape of a fundamental shearing vibration mode is determined by the following
equation.
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where, Z is depth, E(z) is Young's modulus of ground at depth of Z, m(z) is mass
at depth of Z, f(z) is fundamental shearing vibration mode, and H is thickness of
surface layer.
Eq. (2) indicates the displacement normalized by average displacement.

Similarly, the average Poisson's ratio for this soil column is calculated by
the equation below.
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where, v(z) is Poisson's ratio of ground at depth of Z.

Equations (1), (2) and (3) are used in computation of the stiffness of the
plate elements.

Substitution of Soil Column Element by One-Lumped-Mass-Spring System Soil column
elements are made by dividing the ground into the mesh shown in Fig. 2. The
cross-sectional shape of a soil column was made rectangular in this case, but it
would be the same with a triangular cross section.

Letting a soil column in the region demarcated by the dotted line in the
figure vibrate at the fundamental shearing frequency at nodal point i, this is
substituted by a one-lumped-mass-spring system which expresses this condition.
Equivalent spring Ko, and effective mass Mgj are obtained by the following equa-
tions with total mass of soil column as Mj, fundamental vibration mode as fj, and
fundamental circular frequency as wq:

Kei = Mjwj? (4)
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Stiffness matrix [Kg] connecting basement and mass point can be made from Eq. (4).

Computation of Plate Elements The respective plate elements for the individual
soil-column elements in Fig. 2 are computed, At soil-column element J, the four
nodal points are numbered j, j+1, i+l, i, and substitution into plate elements

is done determining equivalent Young's modulus and Poisson's ratio by the equa-

tions below.
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Using Ej and Vj, stiffness matrix [K,] connecting mass points can be computed by
FEM, provided that the condition is to be that of plane stress.

Since Eqs. (6) and (7) compute average values, in applying them it is neces-
sary for appropriate divisions to be made in order that there will not be exces-
sive differences between the values of the four points.

Equation of Motion The equation of motion is as given below.

pa() + e + )G = -l () ®

where, [M]: mass matrix with Mj as component
[C]: damping matrix
[K]: sum of [Ke] and [Kp] in matrix K
[Me]: effective mass matrix
X, Y: displacements of mass points in x and y directions
U, W: accelerations of basement in x and y directionms

Since the displacements of the various mass points, in effect, the average
displacements of the ground at the individual nodal points are determined by solv-
ing this equation, the distribution of displacements in the direction of depth can
be computed by Eq. -(2). The reasons earthquake response in the vertical direction
was not included were that the response displacement in the vertical direction is
small compared with the horizontal direction, and that it was aimed to reduce the
scale of calculations in consideration of practicality. However, in computation
of the matrix [Kp] obtained from plate elements, since a plane stress state is
assumed, vertical displacement accompanying earthquake response in the horizontal
direction is computed from these calculations,

MODEL VIBRATION EXPERIMENTS

A soft surface layer ground model was made on a shaking table to verify the
appropriateness of the mathematical model described in the preceding section and
resonant vibration experiments were conducted. The model ground was made under
especially severe conditions in order to investigate whether this mathematical
model would adequately express the dynamic behavior of the ground.

Fig. 4 is a plan of a model alluvial ground, the contour lines being those
of the basement in units of centimeters. The basement was made of plaster, while
acrylic amide gel was used for the alluvial ground, and since contour lines were
provided to 0, the thickness of the alluvial layer was as much as 20 m at the
upper valley part, It can be seen that the slopes of the valley are very steep
at the left and lower valley sides. The boundaries at the upper valley part and
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the lower valley right side are free boundaries.

The shear wave velocity of the alluvial layer is 240 cm/sec, which is
extremely low compared with that of the basement so that natural frequency is am-
plified at the surface layer, The Poisson's ratio is estimated to be approximate-
ly 0.499, and since the propagation velocity of compression waves is extremely
high compared with the velocity of shear waves, a distinct separation between
shear waves and compression waves is made, and in the frequency range of the ex-
periments, it is practically only shear waves that are predominant,

The straight lines intersecting in grid form in Fig. 4 are thin rubber
strings buried in the surface layer portion, and are for measuring and observing
the vibration mode of the surface. A multiple number of miniature accelerographs
are installed at the shaking table and the surface for observations of frequen-
cies, amplitudes, and phases, Furthermore, the vibrating conditioms of the surface
were recorded by photographs also.

The experiments were conducted rotating the exciting direction 15 deg at a
time. Figs. 5 to 7 show low-order predominant vibrations determined from ampli-
tudes and phases of vibrations at the surface. Although the fundamental vibra-
tions are seen very distinctly, at higher than the third order it is difficult to
obtain a vibration condition with a constant phase over the entire model, and it
is not an easy matter to establish the frequency and mode. This is thought to be
in part because of being influenced by the damping ratio of the material of ap-
proximately 1 percent, The fundamental vibration mode occurs in a very stable
manner, and this appears if there is the slightest component of excitation in the
axial direction of the valley.

Next, on dividing into an element mesh like the grid in Fig. 4, the natural
vibrations of the surface layer are calculated by Eq. (9) using the method de-
scribed under "Mathematical Model,'" and the natural vibration modes are shown in

Figs. 8 through 12.

(K13} = w201 (3} 9)

COMPARISONS OF EXPERIMENTAL AND ANALYTICAL RESULTS

On comparisons of experimental and analytical results, it can be seen that
there is very good agreement between the predominant vibration at the lowest fre-
quency and the fundamental vibration, In Figs. 9 and 10 the modes are fairly
similar, the frequencies being close together at 4.24 Hz and 4.31 Hz, respectively.
The second-order mode in the experimental results can be seen to be intermediate
among these modes. The third-order mode in the experimental results correlate
with the fifth-order mode in the analytical results. The fourth-order mode in the
analyses was not recognized in the experiments. Thereupon, correlating the
natural (predominant) vibrations of similar modes in the experiments and analyses,
the frequencies will be as tabulated below.

Table Natural (Predominant) Frequencies from
Experiments and Analyses

Predominant Frequency Natural Frequency
Mode No. from Experiments (Hz) from Analyses (Hz)

1 3.64 3.72
2 4.40 4.24
3 4,94 4.60

Although it may be considered that the method of diyision had also affected
the analytical results, the foregoing results may be evaluated as giving good
agreement between analyses and experiments in the low-order predominant vibration
region in spite of the various factors previously mentioned, That low-order pre-
dominant vibrations of the surface layer are generated predominantly, and that the
low-order amplitudes are relatively large indicate how significant this model is.
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In closing, the authors wish to express their gratitude to Mr. M. Inamori of
the Institute of Construction Technology, Kumagai-Gumi Co., Ltd., for his invalua-
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Fig. 1 Equivalent Young's Modulus
(EF) and Poisson's Ratio

Fig. 2 One-Lumped-Mass-Spring System Representation
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Fig. 11 Fourth Natural Mode of the Analysis Fig. 12 Fifth Natural Mode of the Analysis
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