

アルゴリズムとデータ構造III 2回目:10月09日

チューリング機械、文脈自由文法

授業資料 http://ir.cs.yamanashi.ac.jp/~ysuzuki/algorithm3/index.html

授業の予定(中間試験まで)

1	10/02	スタック(後置記法で書かれた式の計算)
2	10/09	チューリング機械、文脈自由文法
3	10/16	構文解析 CYK法
	_	構文解析 CYK法
5	10/30	構文解析 CYK法
	11/06	
7	11/13	グラフ(動的計画法, ダイクストラ法, DPマッチング)
8	11/20	グラフ(DPマッチング, ビームサーチ, A*アルゴリズム)
9	11/27	中間試験

授業の予定(中間試験以降)

10	12/04	全文検索アルゴリズム (simple search, KMP)
11	12/11	全文検索アルゴリズム (BM, Aho-Corasick)
12	12/18	全文検索アルゴリズム (Aho-Corasick), データ 圧縮
13	01/08	暗号(黄金虫, 踊る人形) 符号化(モールス信号, Zipfの法則, ハフマン 符号)テキスト圧縮
14	01/15	テキスト圧縮 (zip), 音声圧縮 (ADPCM, MP3, CELP), 画像圧縮(JPEG)
15	01/29	期末試験

形式言語と有限オートマトン入門

4.5.2 チューリング機械

- 言語受理能力が最も高いオートマトン
- ◆半無限長の読み書きが自由にできるテープを用いた有限状態機械

読み書きテープ(初期状態では入力語が記述されている)

読み書きヘッド

(初期状態:左端 語の先頭文字位置

テープ上を左右に移動, read,rewrite)

有限状態制御部

最終状態に遷移すると停止して入力語を受理する

チューリング機械(TM)の定義

TM $M=(Q,\Sigma,\Gamma,\delta,S,B,F)$

Q:内部状態の集合

Σ: 入力アルファベット Bを含まない

Γ: テープ記号の集合 (Γ⊃Σ)

B:空白記号 「の要素であるがΣの要素ではない

δ: 状態遷移関数 δ: Q×Γ→Q×Γ×{R,S,L}

R:ヘッドを右に移動、S:ヘッドを移動させない、

L: ヘッドを左に移動

S:初期状態 S∈Q

F: 最終状態(受理状態)の集合 F⊂Q

例題4.71 w1=0101

 $Q=\{q0,q1,qf\}, \Sigma=\{0,1\}, \Gamma=\{0,1,b\}, S=q0, B=b, F=\{qf\}$

δ	0	1	b
q0	(q0,b,R)	(q1,b,R)	(qf,0,S)
q1	(q1,b,R)	(q0,b,R)	(qf,1,S)
qf			

計算状況を示せ.

Σ*上の任意の語と、その最終計算状況におけるテープ上の記号との対応を答えよ

例題4.71 答え w1=0101

時点表示(計算状況)

0101bbbb... (q₀,b,R)

b101bbbb...

 (q_1,b,R)

bb01bbbb...

 $\mathbf{A}(q_1,b,R)$

bbb1bbbb...

 (q_0,b,R)

 $^{\blacktriangle}(q_f,0,S)$

bbbbQbbb...

/	Λ 1	1	١
(q_0)	UΙ	UI,)

(b q_0^{V} 101)

 $(bb q_1 01)$

(bbb $q_1 1$)

(bbbb q_0)

(bbbb0 q_f)

δ	0	1	b
q_0	(q_0,b,R)	(q_1,b,R)	$(q_{f}, 0, S)$
$q_{\scriptscriptstyle 1}$	(q_1,b,R)	(q ₀ ,b,R)	(q _f ,1,S)
q_f			

w: 1が奇数個 → 1を出力

w: 1が偶数個 → 0を出力

最終状態q_fに遷移 → w1を受理

•

例題4.71 w2′=011010

 $Q=\{q0,q1,qf\}, \Sigma=\{0,1\}, \Gamma=\{0,1,b\}, S=q0, B=b, F=\{qf\}$

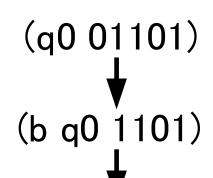
δ	0	1	b
q0	(q0,b,R)	(q1,b,R)	(qf,0,S)
q1	(q1,b,R)	(q0,b,R)	(qf,1,S)
qf			

計算状況を示せ.

Σ*上の任意の語と、その最終計算状況におけるテープ上の記号との対応を答えよ

例題4.71 答え W2′=011010

練習問題1 例題4.71 w2=01101


 $Q=\{q0,q1,qf\}, \Sigma=\{0,1\}, \Gamma=\{0,1,b\}, S=q0, B=b, F=\{qf\}$

δ	0	1	b
q0	(q0,b,R)	(q1,b,R)	(qf,0,S)
q1	(q1,b,R)	(q0,b,R)	(qf,1,S)
qf			

計算状況を示せ.

Σ*上の任意の語と、その最終計算状況におけるテープ上の記号との対応を答えよ

練習問題1 例題4.71 答え

w2=01101

(bb q1 101)

(bbb q0 01)

w: 1が奇数個 → 1を出力

w: 1が偶数個 → 0を出力

(bbbb q0 1)

(bbbbb q1)

最終状態 → 受理 (bbbbb d qf)

4.5.3 オートマトンと計算理論

オートマトンの受理する言語クラス

オートマトン	受理言語型	言語クラス
チューリング機械	第0型言語	句構造言語(PSL)
線形拘束チューリン グ機械	第1型言語	文脈依存言語(CSL)
プッシュダウンオート マトン	第2型言語	文脈自由言語(CFL)
有限オートマトン	第3型言語	正規言語(RL)

RL ⊂ CFL ⊂ CSL ⊂ PSL (チョムスキーの言語階層) 12

万能チューリングマシン

- 任意のTMについて、その動作表を与えられるとあたかも そのTMのように振る舞うTM
- コンピュータ
 - プログラム=動作表(状態遷移関数表)
 - ▶ 入力=入力語
 - コンピュータは万能TM
- チューリングテスト
 - TM *M* が人間
 - コンピュータ(TM)がTM Mを完全に模倣できるか

「形式言語と有限オートマトン入門」 5 形式言語理論入門

- 5.1 形式言語理論
- **5.2** 文脈自由文法
- 5.3 線形文法と正規言語
- 5.4 形式言語のクラス階層とオートマトン
- 5.5 言語処理への応用

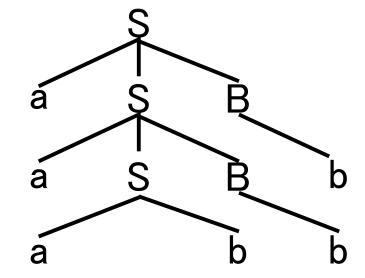
形式文法Gの定義

- G=(N,T,P,S)
 - N: 非終端記号の集合
 - T: 終端記号の集合
 - P: プロダクション
 - S: 開始記号

5.2 文脈自由文法

- 文脈自由文法(CFG)
 - 文脈自由プロダクションのみから構成される
 - 文脈自由プロダクション
 - a→β
 - ただし、α∈N 、β∈V*
 - N: 非終端記号の集合, T: 終端記号の集合, V: NとTの直和
 - 左辺が変数1つ
- 文脈依存文法(CSG)
 - 文脈依存プロダクションを含むプロダクションから構成される
 - 文脈依存プロダクション
 - uav→uβv たたし、a∈N、u,v∈V*、β∈V+
 - N: 非終端記号の集合, T: 終端記号の集合, V: NとTの直和
 - u=v=εのとき(a→β) 文脈自由プロダクションとなる

文脈自由文法の例(例題5.9)


- CFG G=(N,T,P,S)
 - N(非終端記号)={B,S}
 - T(終端記号)={a,b}
 - P: S→aSB | ab B→b

- 語 aaabbb の導出過程
- L(G)はどのような言語か

例題5.9の解答例

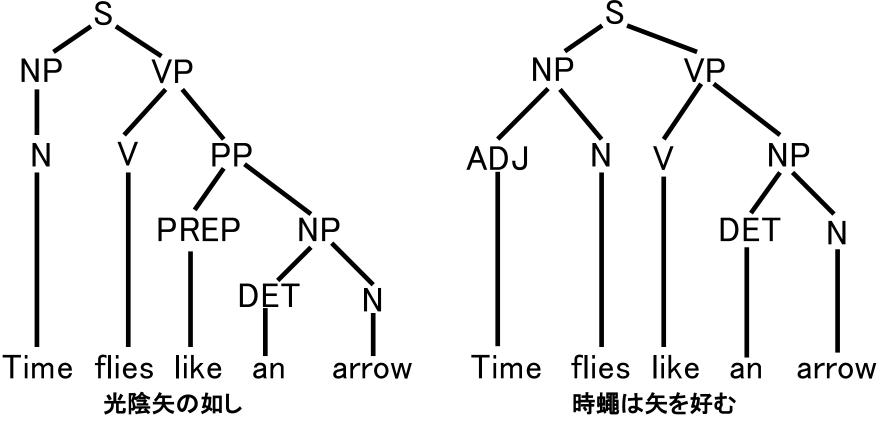
- CFG G=(N,T,P,S)
 - N={B,S}
 - T={a,b}
 - P: S→aSB | ab, B→b
- S⇒aSB⇒aaSBB⇒aaabBB⇒aaabbB⇒aaabbb
- L(G): aⁿbⁿ
- 正規表現では表せない
- プッシュダウンオートマトンでは表現可能
- ■構文木

練習問題2 例題5.10 文脈依存文法の例

- CSG G=(N,T,P,S)
- N={A,B,S}
- T={a,b}
- P: S→aSBA | abA, AB→BA, bB→bb, bA→ba, aA→aa
- 語 aabbaa の導出過程
- L(G) はどのような言語か

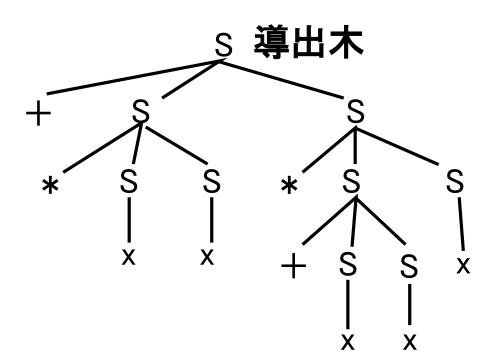
練習問題2 解答 **一**例題5.10 aabbaa

- CSG G=(N,T,P,S)
- N={A,B,S}
- T={a,b}
- P: S→aSBA | abA, AB→BA, bB→bb, bA→ba, aA→aa
- 語 aabbaa の導出過程
- S⇒aSBA⇒aabABA⇒aabBAA⇒aabbAA
- ⇒aabbaA⇒aabbaa
- L(G) はどのような言語か
- L(G): aⁿbⁿaⁿ


構文木(導出木)

Time flies like an arrow.

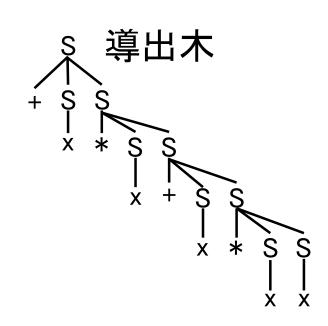
S→NP VP NP→N|DET N|ADJ N VP→V PP|V NP PP→PREP NP N→Time arrow | flies V→flies | like PREP→like DET→an


2種類の導出木

→ 文法が曖昧

例題5.11

- 問題:
- 文法 N={S},T={x,+,*},P={S→+SS|*SS|x}
- 語w= +*xx*+xxx を導出せよ
- 語wの導出木



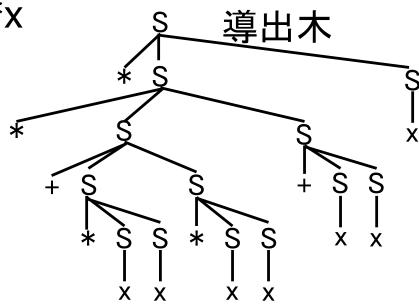
- 解答例
- 導出:

$$S\Rightarrow +SS\Rightarrow +*SSS\Rightarrow +*xxS\Rightarrow +*xx*SS\Rightarrow +*xx*+SSS\Rightarrow +*xx*+SSS\Rightarrow +*xx*+xxx$$

例題5.12 ①

- ■問題
- 文法 N={S},T={x,+,*},P={S→+SS|*SS|x}
- 中置記法 x+x*(x+x*x)

- 解答例
- 前置記法 +x*x+x*xx
- S⇒+SS⇒+xS⇒+x*SS⇒+x*xS⇒+x*x+SS ⇒+x*x+xS⇒+x*x+x*SS⇒+x*x+x*xS ⇒+x*x+x*xx


練習問題3 例題5.12 ②

- ■問題
- 文法 N={S},T={x,+,*},P={S→+SS|*SS|x}
- 中置記法 (x*x+x*x)*(x+x)*x

- ■前置記法
- 最左導出
- 構文木

練習問題3 例題5.12 ②の解答例

- ■問題
- 文法 N={S},T={x,+,*},P={S→+SS|*SS|x}
- 中置記法 (x*x+x*x)*(x+x)*x

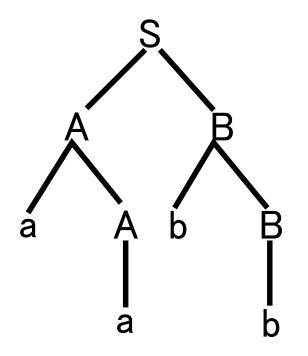
- 解答例
- 前置記法 **+*xx*xx+xxx
- S⇒*SS⇒**SSS ⇒**+SSSS ⇒**+*SSSSS ⇒**+*xSSSS ⇒**+*xxSSS ⇒**+*xx*SSSS ⇒**+*xx*xSSS ⇒**+*xx*xxSS ⇒**+*xx*xx+SSS
- \Rightarrow **+*XX*XX+XXX

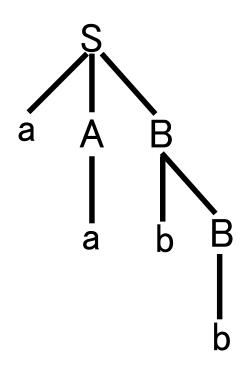
文脈自由文法の曖昧性

- どのような導出を行っても同じ導出木が得られる
- ⇒ 文法Gは曖昧でない

- 複数の異なった導出木が構成できるような語を含む
- ⇒ 文法Gは曖昧である

例題5.26

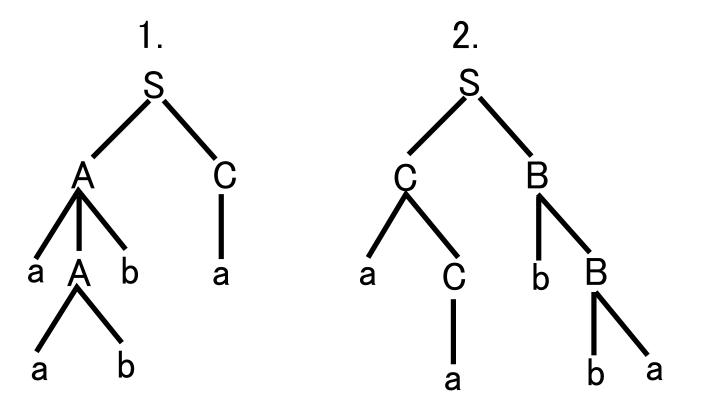

- 文法G=(N,T,P,S)において、N={S,A,B},T={a,b},
- P: $S\rightarrow AB|aAB$, $A\rightarrow aA|a$, $B\rightarrow bB|b$
- この文法が曖昧であることを示せ


例題5.26 解答例

同一文字列に対して2種類の導出

木が構成可能→曖昧である

- 1. S→AB→aAB→aAbB→aabB→aabb
- 2. S→aAB→aaB→aabB→aabb1.

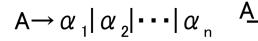


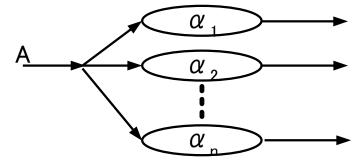
練習問題4 例題5.27

- 文法G=(N,T,P,S)において、
- N={S,A,B,C},T={a,b},
- P: $S\rightarrow AC|CB$, $A\rightarrow aA|a$, $A\rightarrow aAb|ab$, $B\rightarrow bB|ba$
- C→aC|a
- この文法が曖昧であることを、aabbaの導出木を構成して示せ

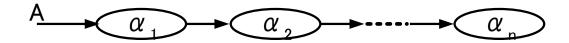
練習問題4 例題5.27 解答例 同一文字列に対して2種類の導出 木が構成可能 → 曖昧である

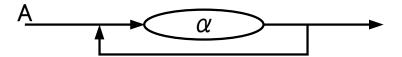
- 1. S→AC→aAbC→aAba→aabba
- 2. S→CB→aCB→aCbB→aabB→aabba

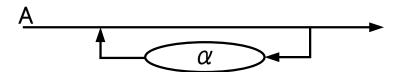

CFGの構文図式

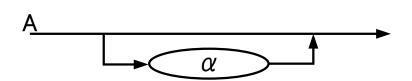


 $A \rightarrow \alpha$


構文図式




$$A \rightarrow \alpha_1 \alpha_2 \cdots \alpha_n$$


$$A \rightarrow \alpha \mid \alpha \mid A \mid$$

$$A \rightarrow \varepsilon |\alpha| \alpha A$$

$$A \rightarrow \varepsilon \mid \alpha$$

文脈自由文法の簡単化

- 以下の書き換え規則を削除する
- 詳しくは154ページ
 - 開始記号Sから導出に使われることの無い非終端記号
 - ε-規則(A→ε: A∈N)
 - 単位規則(A→B:A,B∈N)

例題5.31 ① ε-規則の消去

- S→aA, A→bA|ε
 - S→aA
 - A→bA
 - **■** A→ε

- S→aA|a
- A→bA|b
- S→aA|a, A→bA|b

例題5.31 ② ε-規則の消去

- - S→aA, A→aA|bB, B→bB|ε
 - S→aA
 - A→aA
 - A→bB
 - B→bB
 - B→ε
 - S→aA
 - A→aA
 - A→bB|b
 - B→bB|b
 - S→aA, A→aA|bB|b, B→bB|b

例題5.31 ③ ε-規則の消去

- •
- S \rightarrow aAB, A \rightarrow aA|a|Bb, B \rightarrow bB|ε
 - S→aAB
 - A→aA
 - A→a
 - A→Bb
 - B→bB
 - B→ε
 - S→aAB
 - A→aA
 - A→a
 - A→Bb|b
 - B→bB|b
 - S→aAB, A→aA|a|Bb|b, B→bB|b

例題5.32 ①

 \blacksquare S \rightarrow aA, A \rightarrow aB|B, B \rightarrow bB|b

例題5.33 ①

- S→AB|a, A→a
 - S→AB
 - S→a
 - A→a

- B→ が無いのでS→ABを削除
- S→a

文脈自由文法の標準形

- チョムスキー標準形
 - 文脈自由文法の規約化された生成規則が、
 - すべてA,B,C∈N, a∈Tとして,
 - A→BC または A→a
 - の形をしているとき,この生成規則をチョムスキー標準 形という

文脈自由な生成規則のチョムス キー標準形への変換

- X,A,B,C∈N, a∈Tとして,
- X→aB ならば X→AB, A→a と分解する
- X→ABC ならば X→AY, Y→BC と分解する

例題5.34

 文法G=(N,T,P,S)において、N={S,A,B,C}, T={a,b}, Pを、S→AaC|CbBa, A→aAb|ab, B→bB|b, C→Ca|a とする. この文法Gを

チョムスキー形生成規則をもつ文脈自由文法 に書き換えよ。

•

例題5.34 解答例

- $S \rightarrow AaC \Rightarrow S \rightarrow AS_1$, $S_1 \rightarrow S_2C$, $S_2 \rightarrow a$
- S→CbBa \Rightarrow S→CS₃, S₃→S₄S₅, S₄→b, S₅→BS₂
- $A \rightarrow aAb \Rightarrow A \rightarrow S_2A_1, A_1 \rightarrow AS_4$
- $A \rightarrow ab \Rightarrow A \rightarrow S_2S_4$
- $B \rightarrow bB \Rightarrow B \rightarrow S_4B$
- $C \rightarrow Ca \Rightarrow C \rightarrow CS_2$

次回の講義 構文解析アルゴリズム

- CYK(Cocke-Younger-Kasami)法
 - チョムスキー標準形で書かれた言語の構文 解析手法
- チャート法, LR法