微分積分学I	中間試験問題((2022年	6月

氏名			

学籍番号

次の極限を求めよ.(各4点)

$$(1) \quad \lim_{x \to 0} \frac{x}{\tan x}$$

(2)
$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x + 3} - 2x}$$

次の関数 f(x) が x=0 において連続であるかどうかを判断し、理由とともに答えよ. (5点)

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

次の逆三角関数の値を括弧に入れよ.(各3点)

$$(1) \sin^{-1}\left(\frac{1}{2}\right) = \left(\qquad \qquad \right) \qquad (2) \cos^{-1}\left(-\frac{1}{2}\right) = \left(\qquad \qquad \right)$$

$$(2) \cos^{-1}\left(-\frac{1}{2}\right) = \left(\qquad \right)$$

4. 次の関数の導関数を求めよ. ((1), (2) 5点, (3), (4), (5) 6点)

$$(1) \quad y = \log(e^x + 2)$$

$$(2) \quad y = \frac{\sin x}{x}$$

$$(3) \quad y = \cos^3(\log x)$$

$$(4) \quad y = x^3 \sin^{-1} x$$

$$(5) \quad y = (x+1)^{\sin x}$$

5. ロピタルの定理を用いて、極限 $\lim_{x\to 0} \frac{x-\sin x}{x^3}$ を求めよ. (6点)

6.	/

パラメータ表示された関数 $\begin{cases} x=e^{2t}\\ y=2t-\frac{2}{t} \end{cases}$ の導関数 $\frac{dy}{dx}$ を t の式で表せ. (5点)

7. 関数 $y = \sin^{-1}(x-1)$ $(0 \le x \le 2)$ の逆関数および、その定義域と値域を求めよ.

8. 関数 $f(x) = e^{x^2+1}$ について、次の問いに答えよ. (1) f(x) の 2 次までの導関数をすべて求めよ. (5点)

(2) y = f(x) 上の点 $(1, e^2)$ における接線の方程式を求めよ. (5点)

(3) f(x) の x = 1 におけるテイラー展開を 2 次の項まで求めよ. (4点)

Ω	次の関数のマクローリン展開を	3 د	の頂まで求めた	((1)	(2) 6占	(2)	141
9.		\boldsymbol{z}	の頃まじ氷めよ.	((1), ((Z) O \mathbb{R} ,	(3)) 4 尽,

$$(1) \quad f(x) = e^{2x}$$

$$(2) \quad f(x) = \sqrt{1-x}$$

$$(3) \quad f(x) = x\sqrt{1-x}$$

10.
$$f(x) = x^2 e^{3x}$$
 の n 次導関数を求めよ. ただし, $n \ge 2$ とする. (6点)