氏名	
学籍番号	
	•

- 1. 累次積分 $K = \int_0^{\log 3} \left(\int_1^{e^x} f(x,y) \, dy \right) dx$ について,次の問いに答えよ.
 - (1) 累次積分 K を 2 重積分で表したときの積分領域 D を図示せよ. (4点)

(2) 累次積分 K の積分順序を交換せよ. (6点)

2. 関数 $f(x,y) = xy^2 + 2x^2 - x$ の極値について調べ, 極値を与える点, 極大値および極小値をすべて求めよ. (10点)

(1)
$$\int_{1}^{2} \left(\int_{0}^{3} (xy - y^{2}) dx \right) dy$$

$$(2) \quad \int_1^2 \left(\int_0^{\sqrt{x}} \frac{y}{x^2} \, dy \right) dx$$

(3)
$$\iint_D \frac{y}{1+xy} dxdy, D = \left\{ (x,y) \mid 1 \le y \le 2, \ 0 \le x \le \frac{1}{y} \right\}$$

$$I = \iint_D 6xe^{y^3} dxdy, \quad D = \{ (x, y) \mid 0 \le y \le 1, \ 0 \le x \le y \}$$

(2) Iの値を求めよ. (6点)

5. 次の2重積分について、適切な変数変換を行いIの値を求めよ. (10点)

$$I = \iint_D (2x^2 + y^2) \, dx \, dy, \quad D = \{ (x, y) \, | \, 0 \le 2x - y \le 2, \, -2 \le x + y \le 0 \}$$

6. 次の2重積分の値を極座標変換を用いて求める.

$$I = \iint_D \frac{x}{\sqrt{x^2 + y^2}} dx dy, \quad D = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, \ x \ge 0, \ y \ge 0\}$$

- (1) $x = r\cos\theta, y = r\sin\theta$ とするとき、ヤコビアンの絶対値 $\left|J(r,\theta)\right| = \left|\frac{\partial(x,y)}{\partial(r,\theta)}\right|$ を求めよ. (4点)
- (2) Iの値を求めよ. (8点)

7.		各問において,下線に当てはまる数式を答えよ.(各 3 点,計 1 2 点) 円柱面 $x^2+y^2=1$ と 2 平面 $z=y-1$, $z=2$ で囲まれる部分の体積 V は 次の 2 重積分で表される.	
		$V = \iint_{D} \underline{\qquad} dxdy, \qquad D = \{ (x,y) \mid \underline{\qquad}$	}
	(2)	放物柱面 $z=1-y^2$ が円柱面 $x^2+y^2=1$ によって切り取られる部分の表面積 S は次の 2 重積分によって表される.	
		$S = \iint_{D} dxdy, \qquad D = \{ (x,y) \mid \underline{\hspace{1cm}}$	
8.	める.	$\varphi(x,y)=x^2+y^2-1=0$ のもとで、関数 $f(x,y)=x+2y$ の最大値と最小値を求以下の下線に当てはまる数式または数値を答えよ、((1) 6 点(2) 8 点) $\varphi(x,y)=x^2+y^2-1=0$ のもとで, $f(x,y)$ の条件付き極値を与える点を (a,b) とする.このとき $(\varphi_x(a,b),\varphi_y(a,b))\neq (0,0)$ であるから,ラグランジュの未定乗数法より a,b および未定乗数 λ に対して次の 3 式が成り立つ.	
		<u>(1)</u> <u>(2)</u>	
	(2)	③ (1) を用いて最大値と最小値を求めよ. (ただし, 最大値と最小値の存在については言及しなくて良い.)	
		最大値: 最小値:	
		計算過程(採点対象)	