

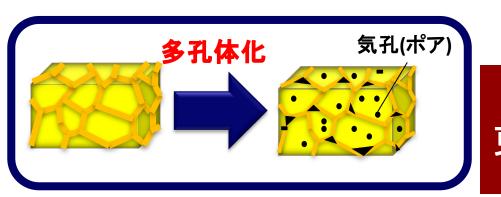
 T_c が高く、軽量な物質の d_{33} を上昇させることで、 高性能圧電材料の作製を目指す

圧電材料の選択

	\mathcal{T}_c	$oldsymbol{arepsilon}_{33}^{T}/oldsymbol{arepsilon}_{0}$	<i>d₃₃</i> (pm/V <i>)</i>	ρ (g/cm³)
チタン酸ジルコン酸鉛(PZT)¹	386	730~1700	220~374	8.40
BaTiO ₃ (単結晶)¹	130	168	86	6.01
BaTiO₃(セラミックス)¹	130	1900	191	6.01
KNbO ₃ (KN)(単結晶)²	435	43.6	29.6	4.62
KNbO₃(セラミックス)³	435	580	66.4	4.62

¹⁾ B.Jaffe, W.R.Cook.Jr., and H.Jaffe, Piezoelectric Ceramics, Academic Press (1971)

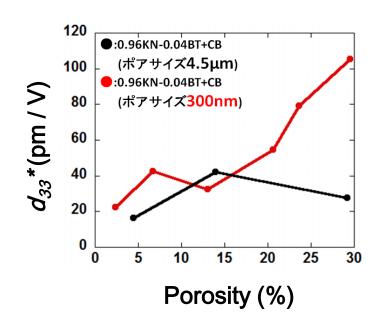
ニオブ酸カリウム(KNbO₃, KN)


Tcが高く、軽量なKNをモデル材料に決定

KNの d₃₃向上を検討

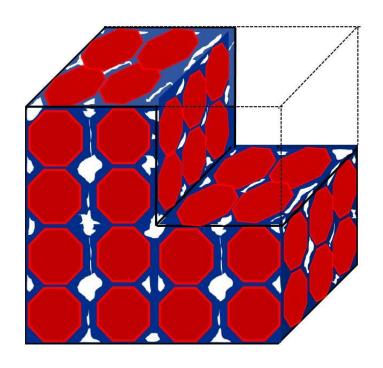
²⁾ S.Wada et al., Jpn.J.Appl.Phys., 43 (2004) 6692.

³⁾ K.Matsumoto et al., Ceramics Internationai , Jpn.J.Appl.Phys., 45(2006) 4479


d33の上昇方法

多孔体化

_{材料の} 更なる軽量化 セラミックスの **歪量が増加** (柔らかくなる)


K. Maeda et al., Key Eng. Mater. (2013).

気孔率、ポアサイズの変化により d₃₃*(見かけのd₃₃定数)が増減

気孔率、ポアサイズの制御 ⇒気孔条件の最適化 ⇒ d₃₃の向上を目指す

多孔体のモデル

セラミックス内に開気孔を導入

気孔率の制御により *d*₃₃の向上を目指す