オートマトンと言語 11回目 6月20日(水)

4章 DFAの最小化

授業資料

http://ir.cs.yamanashi.ac.jp/~ysuzuki/public/automaton/

授業の予定(中間試験まで)

回数	月日	内容	
1	4月11日	オートマトンとは、オリエンテーション	
2	4月18日	2章(数式の記法, スタック, BNF)	
3	4月25日	2章(BNF), 3章(グラフ)	
4	5月02日	3章(グラフ)	
5	5月09日	4章 有限オートマトン1	
6	5月16日	有限オートマトン2 2・3章の小テスト	
7	5月23日	正規表現	
8	5月30日	正規表現、非決定性有限オートマトン	
9	6月06日	中間試験、前半のまとめ	
出張などにより 授業日が変更になる場合があります			

授業の予定

回数	月日	内容		
10	6月13日	NFA→DFA		
11	6月20日	DFAの最小化		
12	6月27日	DFAの最小化、有限オートマトンの応用		
13	7月04日	プッシュダウンオートマトン, チューリング機械		
14	7月11日	形式言語理論, 文脈自由文法		
15	7月18日	期末試験, まとめ		

出張などにより、授業日が変更になる場合があります.

山梨大学 **→** プログラミングコンペティション

- http://www.cs.yamanashi.ac.jp/progcomp11/
- 部門:
 - 初級者部門(KM1·2年生)
 - 一般部門
- スケジュール:
 - 06月15日 課題発表(既に発表済み)
 - 07月15日 応募締め切り
 - 10月21日 解答締め切り
 - 11月07日 成績発表
 - 11月16日 表彰式(優秀者には豪華(!?)な副賞も)

-

今日のメニュー

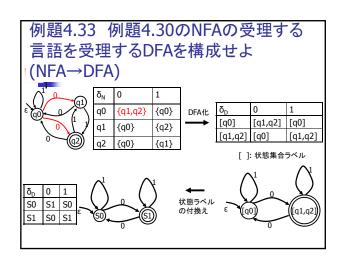
- ε動作を含むNFA→ε動作を含まないNFA
- 正規表現→ ε動作を含むNFA
- ■同値類
- DFAの最小化

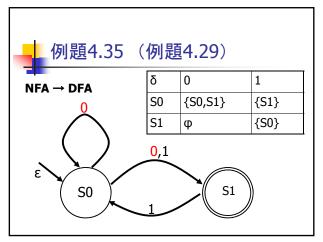
4.4.2 非決定性FAの決定性FA

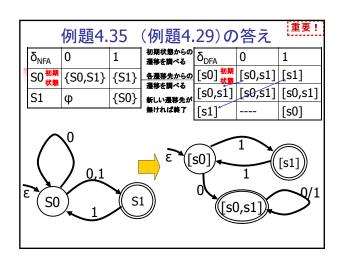
への変換(p.107)

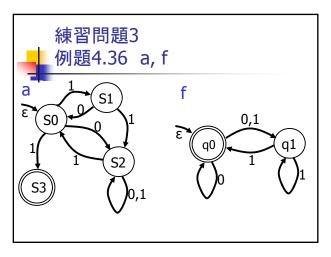
あるDFAで受理できる言語を受理するNFA は簡単に構成できる(DFA→NFAは簡単)

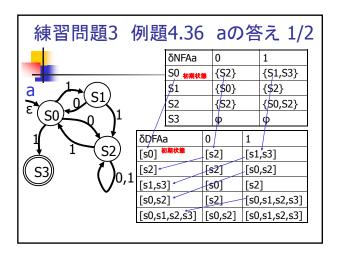
- NFA→DFAは可能か?
 - 可能(変換方法は後で説明)

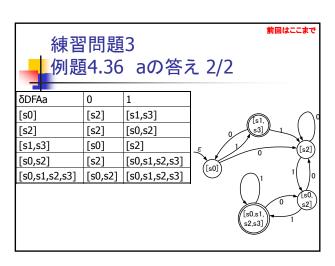


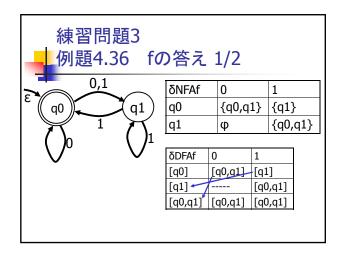


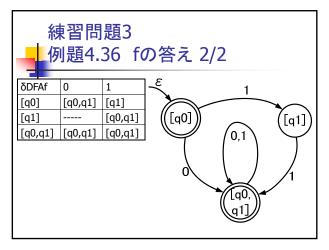


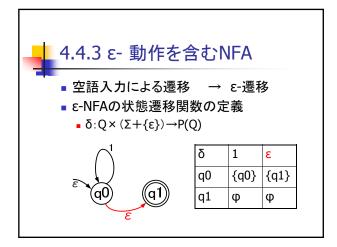


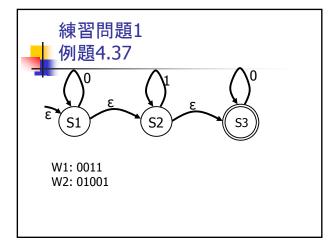


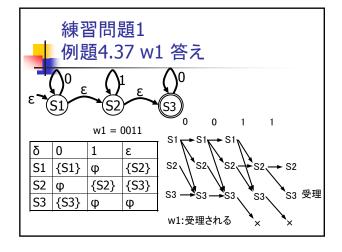


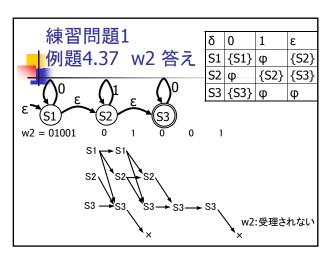


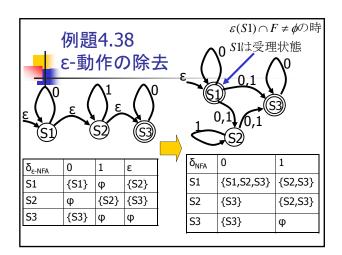


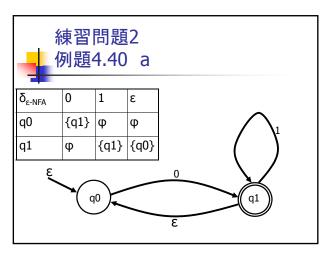


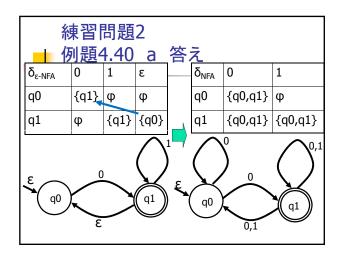


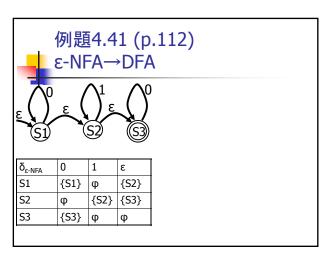


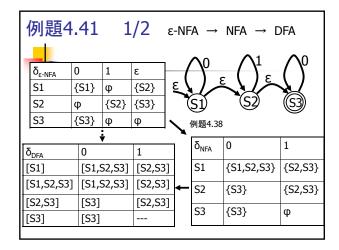


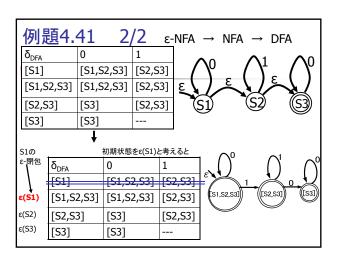










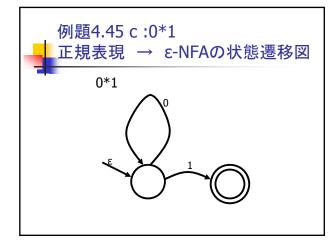


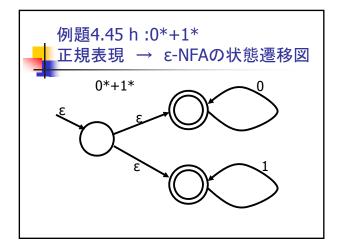
4.4.4 正規表現で表された言語 を受理するε-NFA

- (1) 正規言語の閉包性
 - 正規言語:FAの受理する言語, あるいは正規表現の 表す言語のクラス
 - 正規言語は言語の和,連接,クリーネ閉包(Σ*)について閉じている
 - 正規言語は和,積,補の集合演算についても閉じている

閉じている:教科書8ページ クリーネ閉包:教科書33ページ 連接:教科書34ページ

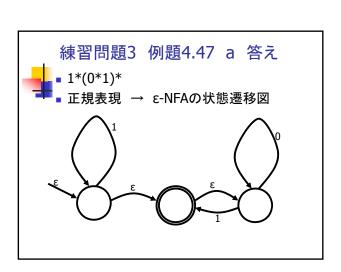
アルファベットΣの文字から構成される全ての語の集合

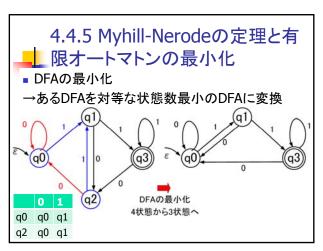


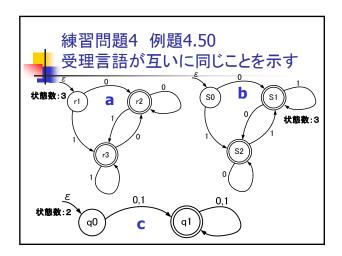


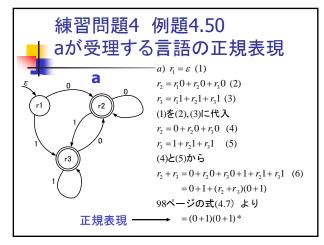
練習問題3 例題4.47 a

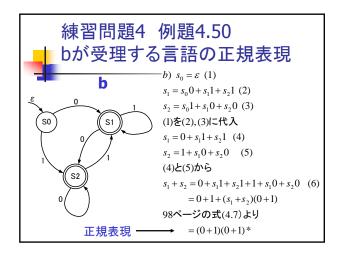
- **1***(0*1)*
- 正規表現 → ε-NFAの状態遷移図

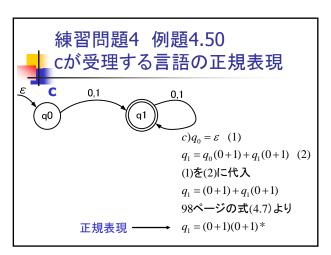












練習問題4 例題4.50 の答え

■ a,b,cとも正規表現は(0+1)(0+1)*→受理言語が同じ

 $r_2 = r_1 0 + r_2 0 + r_3 0$ (2) $r_2 = r_1 + r_2 + r_3 + r_4 + r_5 + r_5$ (1)を(2)、(3)に代入 $r_2 = 0 + r_2 0 + r_3 0$ (4) $r_3 = 1 + r_2 1 + r_3 1$ (5) (4)と(5)から $r_2 + r_3 = 0 + r_2 0 + r_3 0 + 1 + r_2 1 + r_3 1$ (6) $s_2 = 1 + s_1 0 + s_2 0$ (5) $=0+1+(r_2+r_3)(0+1)$ 98ページの式(4.7) より

=(0+1)(0+1)*

b) $s_0 = \varepsilon$ (1) $s_1 = s_0 0 + s_1 1 + s_2 1$ (2) $s_2 = s_0 1 + s_1 0 + s_2 0$ (3) (1)を(2)、(3)に代入

 $q_1 = q_0(0+1) + q_1(0+1)$ (2)

(1)を(2)に代入

 $q_1 = (0+1) + q_1(0+1)$

 $q_1 = (0+1)(0+1)*$

98ページの式(4.7)より

 $s_1 = 0 + s_1 1 + s_2 1$ (4) (4)と(5)から $s_1+s_2=0+s_11+s_21+1+s_10+s_20 \quad (6)$ $= 0 + 1 + (s_1 + s_2)(0 + 1)$ 98ページの式(4.7)より

= (0+1)(0+1)*

┗ 同値関係(6ページを参照)

関係Rが以下の3つの性質を持つとき、Rは同値関係

反射的 : 任意の $x \in A$ に対し, xRx

対称的 : 任意の $x, y \in A$ に対し,xRyならばyRx

推移的: 任意の $x, y, z \in A$ に対し, xRyかつyRzならばxRz

同値関係 R_{M}

 $x, y \in \Sigma^*$ に対し、 $xR_M y : \Leftrightarrow \delta(S, x) = \delta(S, y) = q_i$ は同値関係

R_Mが同値関係 → 反射律,対称律,推移律を満たす.

反射律:任意の $x \in \Sigma^*$ に対し、 $xR_M x$

対称律:任意の $x, y \in \Sigma^*$ に対し、 $xR_M y$ ならば $yR_M x$

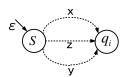
推移律:任意の $x, y, z \in \Sigma^*$ に対し、 $xR_M y$ かつ $yR_M z$ ならば $xR_M z$

 $R_{\scriptscriptstyle M}$:同値関係

x, v:同值

同値類:同値の集合

 q_{b} で受理される語の集合ightarrow同値類



同値類

R:集合Aにおける同値関係とする ある2つの要素 $a,b \in A$ が $(a,b) \in R$ であるとき aはbと同値

aの同値類 [a] :aと同値な要素の集合 Aは同値類に直和分割される.

直和: $A \cap B = \phi$ であるような集合A, Bの和集合

右不変同値関係 R_{M}

同値関係RにおいてxRyならばxzRyzという性質があるとき,

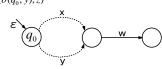
Rは(連接に関して)右不変な関係

 $xR_M y$:任意の $x, y \in \sum^*$ において $xR_M y$ ならば、 任意の $w \in \sum$ *に対し、 $xwR_M yw$

 $\delta(q_{\scriptscriptstyle 0},x) = \delta(q_{\scriptscriptstyle 0},y) = q_{\scriptscriptstyle b} \text{tbit}$

 $\delta(\delta(q_0,x),z) = \delta(q_b,z) = \delta(\delta(q_0,y),z)$

R_xは右不変同値関係



右不変同値関係 R_L

同値関係RにおいてxRyならばxzRyzという性質があるとき、Rは(連接に関して)右不変な関係

 $xR_{L}y$: 任意の $x, y \in \sum$ において、任意の $w \in \sum$ *に対し、

 $\delta(q_0, xw) \in F$ かつ $\delta(q_0, yw) \in F$ または $\delta(q_0, xw) \notin F$ かつ $\delta(q_0, yw) \notin F$ (xw, ywともにLに属すか, ともに属さない)

反射律 xR_Lx を満たす

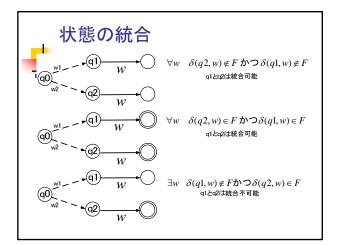
対称律 $\delta(q_0, xw) \in F$ かつ $\delta(q_0, yw) \in F$ ならば $\delta(q_0, yw) \in F$ かつ $\delta(q_0, xw) \in F$ ∉ Fの時も同様

 $xR_L y$ ならば $yR_L x$ を満たす

推移律 $(\delta(q_0, xw) \in F$ かつ $\delta(q_0, yw) \in F$)かつ $(\delta(q_0, yw) \in F$ かつ $\delta(q_0, zw) \in F$

ならば $\delta(q_0, xw) \in F$ かつ $\delta(q_0, zw) \in F$

∉ Fの時も同様 $xR_L y$ かつ $yR_L z$ ならば $xR_L z$ q0 RLは右不変性を持つ R, は右不変同値関係



→ 今日のまとめ

- ε動作を含むNFA→ε動作を含まないNFA
- 正規表現→ ε動作を含むNFA
- ■同値類
- DFAの最小化