オートマトンと言語 13回目 7月04日(水)

4章 プッシュダウンオートマトン, チューリング機械

授業資料

http://ir.cs.yamanashi.ac.jp/~ysuzuki/public/automaton/

授業の予定(中間試験まで)

回数	月日	内容		
1	4月11日	オートマトンとは、オリエンテーション		
2	4月18日	2章(数式の記法, スタック, BNF)		
3	4月25日	2章(BNF), 3章(グラフ)		
4	5月02日	3章(グラフ)		
5	5月09日	4章 有限オートマトン1		
6	5月16日	有限オートマトン2 2・3章の小テスト		
7	5月23日	正規表現		
8	5月30日	正規表現、非決定性有限オートマトン		
9	6月06日	中間試験, 前半のまとめ		
出張などにより、授業日が変更になる場合があります。				

授業の予定

回数	月日	内容			
10	6月13日	NFA→DFA			
11	6月20日	DFAの最小化			
12	6月27日	DFAの最小化、有限オートマトン の応用			
13	7月04日	プッシュダウンオートマトン, チューリング機械			
14	7月11日	形式言語理論, 文脈自由文法			
15	7月18日	期末試験、まとめ			
山建た じに トロ					

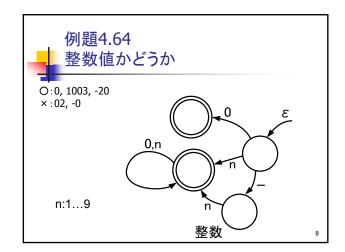
出張などにより、授業日が変更になる場合があります.

山梨大学 → プログラミングコンペティション

- http://www.cs.yamanashi.ac.jp/progcomp11/
- 部門:
 - 初級者部門(KM1·2年生)
 - 一般部門
- スケジュール:
 - 06月15日 課題発表(既に発表済み)
- ▶ 07月15日 応募締め切り
 - 10月21日 解答締め切り
 - 11月07日 成績発表
 - 11月16日 表彰式(優秀者には豪華(!?)な副賞も)

今日のメニュー

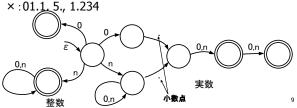
- 有限オートマトンの応用
- プッシュダウンオートマトン(PDA)
- チューリング機械



4.4.6 有限オートマトンの応用

普段お世話になっているコンパイラはどん な作業をしているのだろうか。

6

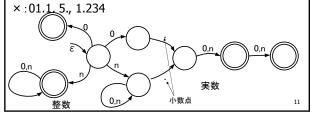


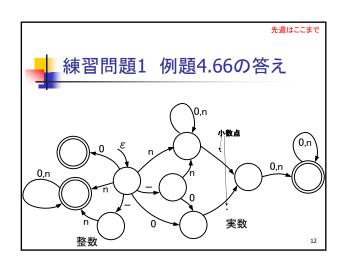
例題4.65

 Σ = $\{0,n,.\}$ 上の語について、入力された語が整数あるいは 小数点2桁以内の非負の実数値の表現となっているかどうかを判断するFAを構成せよ、nは $1\sim9$ の数字を表す、O:0.11,123.1,1.0

∨.0.11, 123.1, 1.0 ∨.01 1 E 1 224

Σ={0,n, ,,-}上の語について, 入力された語が整数 あるいは実数の表現となっているかどうかを判断する FAを構成せよ. nは1~9の数字を表す.


O:51, 0.11, 123.1, 1.0, -0.9, -10.30, -1.3333333 ×:01.1, 5., -01.2, -.2


10

例題4.66の手がかり - 例題4.65

 Σ ={0,n, .}上の語について、入力された語が整数あるいは 小数点2桁以内の非負の実数値の表現となっているかどう かを判断するFAを構成せよ、nは1~9の数字を表す.

O:0.11, 123.1, 1.0

練習問題2 例題4.67 FORTRAN, C言語の変数名

FORTRANの変数名 英字から始まる6文字以内の英数字列

C言語の変数名 英字から始まる任意長の英数字列

英字から始まる6文字以内の英数字

よ

c
C,n

練習問題2 例題4.67の答え

4

練習問題2 例題4.67の答え C言語

英字から始まる任意長の英数字

- c: 任意の英字
- n: 任意の数字

4

13

15

4.5 プッシュダウンオートマトンと チューリング機械

- 4.5.1 プッシュダウンオートマトン
- 4.5.2 チューリング機械
- 4.5.3 オートマトンと計算理論

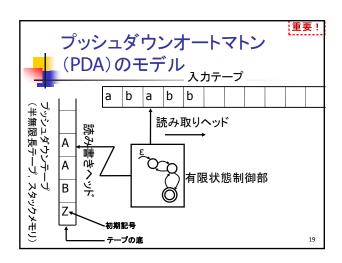
16

4.5.1 プッシュダウンオートマトン

- 有限オートマトン
- =内部記憶(状態を記憶する)しか持たない
- プッシュダウンオートマトン
- =有限オートマトン + プッシュダウンテープ プッシュダウンテープ: **外部記憶**(スタック)

17

有限オートマトンで受理できない言語

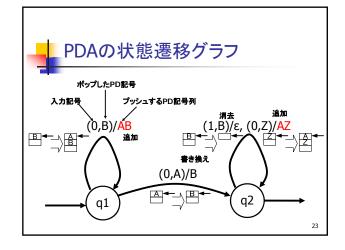


重要!

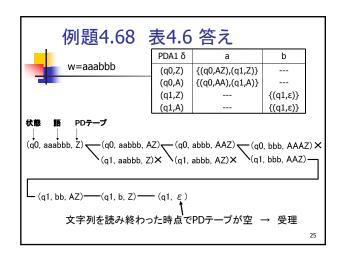
左の0と右の0の数を ,一致させなければならない →0の数を記憶する必要

- <S> :: 0<S>0 | 1
 - Sの例: 010, 00100, 0001000
- ()を含む式を受理するFAは非常に複雑
 - 例: ((y+z)*2)/3
- 正規表現では記述することが難しい
- これらの言語はプッシュダウンオートマトンなら 受理可能

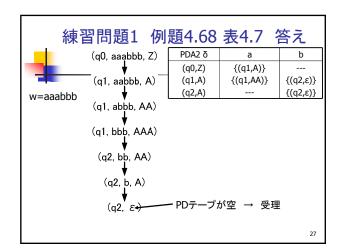
18



- 空スタック受理のPDA
 - 入力語を読み終わった後、PDテープが空であればその語を受理する
- 最終状態受理のPDA
 - 入力語を読み終わった後、最終状態にあればその語を受理する

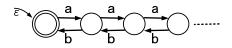

20

PDAの定義				
	PDA M=(Q,Σ,Γ,δ,S,Z)			
Q	内部状態の集合			
Σ	入力テープ記号の集合(アルファベット)			
Γ	プッシュダウン記号の集合			
δ	状態遷移関数 δ: Q×(Σ+{ε})×Γ→p(Q×Γ*) (非決定性状態遷移関数)			
S	初期状態 S∈Q			
Z	初期プッシュダウン記号 Z∈Γ			
		21		



Q={q0,q1}, Σ={a,b}, Γ={Z,A}, 初期状態=q0, 初期PD記号=Z

PDA2 δ	a	b
(q0,Z)	{(q1,A)}	
(q1,A)	{(q1,AA)}	{(q2,ε)}
(q2,A)		{(q2,ε)}


w=aaabbb

26

PDA Łanbn

- aⁿbⁿ(nは任意の整数) はFAでは受理できない がPDAでは受理可能
- PDテープがaの出現回数とbの出現回数の差を 記憶している
- aを「(」, bを「)」と考えると中置記法の括弧の釣 り合いをとることにも利用可能

4.5.2 チューリング機械

- 言語受理能力が最も高いオートマトン
- 半無限長の読み書きが自由にできるテープを用いた有限状態機械

読み書きテープ(初期状態では入力語が記述されている)

| 0 | 1 | 1 | 0 | 0 | 1 | B | B | B | B | ... 読み書きヘッド (初期状態:左端 語の先頭文字位置

<u>テー</u>プ上を左右に移動, read,rewrite)

有限状態制御部

最終状態に遷移すると停止して入力語を受理する

重要!

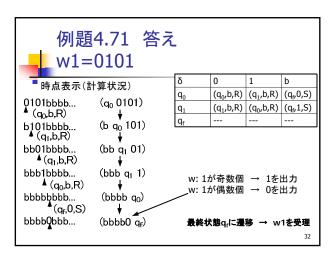
チューリング機械(TM)の定義

TM M=(Q, Σ , Γ , δ , S, B, F)

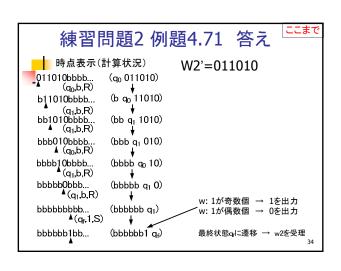
Q:内部状態の集合

Σ: 入力アルファベット Bを含まない

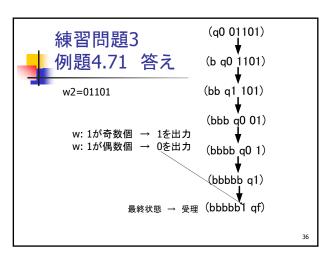
Γ: テープ記号の集合 (Γ⊃Σ)


B: 空白記号 「の要素であるがΣの要素ではない

δ: 状態遷移関数 δ: Q×Γ→Q×Γ×{R,S,L} R:ヘッドを右に移動、S:ヘッドを移動させない、 L: ヘッドを左に移動


S:初期状態 S∈Q

F: 最終状態(受理状態)の集合 F⊂Q



4.5.3 オートマトンと計算理論

オートマトンの受理する言語クラス

オートマトン	受理言語型	言語クラス
チューリング機械	第0型言語	句構造言語(PSL)
線形拘束チューリン グ機械	第1型言語	文脈依存言語(CSL)
プッシュダウンオート マトン	第2型言語	文脈自由言語(CFL)
有限オートマトン	第3型言語	正規言語(RL)

RL ⊂ CFL ⊂ CSL ⊂ PSL (チョムスキーの言語階層)

→ 万能チューリングマシン

- 任意のTMについて、その動作表を与えられるとあたかも そのTMのように振る舞うTM
- コンピュータ
 - プログラム=動作表(状態遷移関数表)
 - 入力=入力語
 - コンピュータは万能TM
- チューリングテスト
 - TM *M* が人間
 - コンピュータ(TM)がTM Mを完全に模倣できるか

_ 今日のまとめ

- ■プッシュダウンオートマトン(PDA)
 - モデル
 - 時点表示の推移
 - 受理する言語
- チューリング機械
 - モデル
 - 計算状況の推移